Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(12): 2608-2622, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38032104

RESUMO

Survival rates among patients with high-risk neuroblastoma remain low and novel therapies for recurrent neuroblastomas are required. ALK is commonly mutated in primary and relapsed neuroblastoma tumors and ALK tyrosine kinase inhibitors (TKI) are promising treatments for ALK-driven neuroblastoma; however, innate or adaptive resistance to single-agent ALK-TKIs remain a clinical challenge. Recently, SHP2 inhibitors have been shown to overcome ALK-TKI resistance in lung tumors harboring ALK rearrangements. Here, we have assessed the efficacy of the SHP2 inhibitor TNO155 alone and in combination with the ALK-TKIs crizotinib, ceritinib, or lorlatinib for the treatment of ALK-driven neuroblastoma using in vitro and in vivo models. In comparison to wild-type, ALK-mutant neuroblastoma cell lines were more sensitive to SHP2 inhibition with TNO155. Moreover, treatment with TNO155 and ALK-TKIs synergistically reduced cell growth and promoted inactivation of ALK and MAPK signaling in ALK-mutant neuroblastoma cells. ALK-mutant cells engrafted into larval zebrafish and treated with single agents or dual SHP2/ALK inhibitors showed reduced growth and invasion. In murine ALK-mutant xenografts, tumor growth was likewise reduced or delayed, and survival was prolonged upon combinatorial treatment of TNO155 and lorlatinib. Finally, we show that lorlatinib-resistant ALK-F1174L neuroblastoma cells harbor additional RAS-MAPK pathway alterations and can be resensitized to lorlatinib when combined with TNO155 in vitro and in vivo. Our results report the first evaluation of TNO155 in neuroblastoma and suggest that combinatorial inhibition of ALK and SHP2 could be a novel approach to treating ALK-driven neuroblastoma, potentially including the increasingly common tumors that have developed resistance to ALK-TKIs. SIGNIFICANCE: These findings highlight the translatability between zebrafish and murine models, provide evidence of aberrant RAS-MAPK signaling as an adaptive mechanism of resistance to lorlatinib, and demonstrate the clinical potential for SHP2/ALK inhibitor combinations for the treatment of ALK-mutant neuroblastoma, including those with acquired tolerance or potentially resistance to ALK-TKIs.


Assuntos
Neuroblastoma , Peixe-Zebra , Humanos , Camundongos , Animais , Peixe-Zebra/metabolismo , Quinase do Linfoma Anaplásico , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Lactamas Macrocíclicas/farmacologia , Neuroblastoma/tratamento farmacológico
2.
Cancer Res ; 80(16): 3413-3423, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32586982

RESUMO

Survival for high-risk neuroblastoma remains poor and treatment for relapsed disease rarely leads to long-term cures. Large sequencing studies of neuroblastoma tumors from diagnosis have not identified common targetable driver mutations other than the 10% of tumors that harbor mutations in the anaplastic lymphoma kinase (ALK) gene. However, at neuroblastoma recurrence, more frequent mutations in genes in the RAS-MAPK pathway have been detected. The PTPN11-encoded tyrosine phosphatase SHP2 is an activator of the RAS pathway, and we and others have shown that pharmacologic inhibition of SHP2 suppresses the growth of various tumor types harboring KRAS mutations such as pancreatic and lung cancers. Here we report inhibition of growth and downstream RAS-MAPK signaling in neuroblastoma cells in response to treatment with the SHP2 inhibitors SHP099, II-B08, and RMC-4550. However, neuroblastoma cell lines harboring endogenous NRAS Q61K mutation (which is commonly detected at relapse) or isogenic neuroblastoma cells engineered to overexpress NRASQ61K were distinctly resistant to SHP2 inhibitors. Combinations of SHP2 inhibitors with other RAS pathway inhibitors such as trametinib, vemurafenib, and ulixertinib were synergistic and reversed resistance to SHP2 inhibition in neuroblastoma in vitro and in vivo. These results suggest for the first time that combination therapies targeting SHP2 and other components of the RAS-MAPK pathway may be effective against conventional therapy-resistant relapsed neuroblastoma, including those that have acquired NRAS mutations. SIGNIFICANCE: These findings suggest that conventional therapy-resistant, relapsed neuroblastoma may be effectively treated via combined inhibition of SHP2 and MEK or ERK of the RAS-MAPK pathway.


Assuntos
Genes ras , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Aminopiridinas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Xenoenxertos , Humanos , Indóis/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , Piperidinas/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Piridonas/uso terapêutico , Pirimidinas/uso terapêutico , Pirimidinonas/uso terapêutico , Pirróis/uso terapêutico , Triazóis/uso terapêutico , Vemurafenib/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...