Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266035

RESUMO

BackgroundThe duration and magnitude of SARS-CoV-2 immunity after infection, especially with regard to the emergence of new variants of concern (VoC), remains unclear. Here, immune memory to primary infection and immunity to VoC was assessed in mild-COVID-19 convalescents one year after infection and in the absence of viral re-exposure or COVID-19 vaccination. MethodsSerum and PBMC were collected from mild-COVID-19 convalescents at [~]6 and 12 months after a COVID-19 positive PCR (n=43) and from healthy SARS-CoV-2-seronegative controls (n=15-40). Serum titers of RBD and Spike-specific Ig were quantified by ELISA. Virus neutralisation was assessed against homologous, pseudotyped virus and homologous and VoC live viruses. Frequencies of Spike and RBD-specific memory B cells were quantified by flow cytometry. Magnitude of memory T cell responses was quantified and phenotyped by activation-induced marker assay, while T cell functionality was assessed by intracellular cytokine staining using peptides specific to homologous Spike virus antigen and four VoC Spike antigens. FindingsAt 12 months after mild-COVID-19, >90% of convalescents remained seropositive for RBD-IgG and 88.9% had circulating RBD-specific memory B cells. Despite this, only 51.2% convalescents had serum neutralising activity against homologous live-SARS-CoV-2 virus, which decreased to 44.2% when tested against live B.1.1.7, 4.6% against B.1.351, 11.6% against P.1 and 16.2%, against B.1.617.2 VoC. Spike and non-Spike-specific T cells were detected in >50% of convalescents with frequency values higher for Spike antigen (95% CI, 0.29-0.68% in CD4+ and 0.11-0.35% in CD8+ T cells), compared to non-Spike antigens. Despite the high prevalence and maintenance of Spike-specific T cells in Spike high-responder convalescents at 12 months, T cell functionality, measured by cytokine expression after stimulation with Spike epitopes corresponding to VoC was severely affected. InterpretationsSARS-CoV-2 immunity is retained in a significant proportion of mild COVID-19 convalescents 12 months post-infection in the absence of re-exposure to the virus. Despite this, changes in the amino acid sequence of the Spike antigen that are present in current VoC result in virus evasion of neutralising antibodies, as well as evasion of functional T cell responses. FundingThis work was funded by project grants from The Hospital Research Foundation and Womens and Childrens Hospital Foundation, Adelaide, Australia. MGM is THRF Early Career Fellow. BGB is THRF Mid-Career Fellow. This project has been supported partly with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. 75N93021C00016 to A.S. and Contract No. 75N9301900065 to A.S, D.W. Evidence before this studyWe regularly searched on PubMed and Google Scholar in June-October 2021 using individual or combinations of the terms "long-term immunity", "SARS-CoV-2", "antigenic breadth", "variant of concern" and "COVID-19". We found studies that had assessed immune correlates at multipe time points after COVID-19 disease onset in convalescents, but not the antigenic breadth of T cells and antibodies and not in relation to VoC. Other immune studies in virus naive vaccinees, or vaccinated convalescents evaluated VoC-specific immunity, but not in convalescents that have not been vaccinated. In summary, we could not find long-term studies providing and in-depth evaluation of functionality of humoral and cell-mediated immunity, combined with addressing the adaptability of these immune players to VoC. Added value of this studyThe window of opportunity to conduct studies in COVID-19 convalescents (i.e. natural immunity to SARS-CoV-2) is closing due to mass vaccination programs. Here, in a cohort of unvaccinated mild-COVID-19 convalescents, we conducted a comprehensive, longitudinal, long-term immune study, which included functional assays to assess immune fitness against antigenically different VoC. Importantly, the cohort resided in a SARS-CoV-2-free community for the duration of the study with no subsequent re-exposure or infection. Our findings reveal a deeply weakened humoral response and functional vulnerability of T cell responses to VoC Spike antigens. Implications of all the available evidenceThis study provides a valuable snapshot of the quality of SARS-CoV-2 natural immunity and its durability in the context of a pandemic in which new variants continuously emerge and challenge pre-existing immune responses in convalescents and vacinees. Our results serve as a warning that delays in vaccination programs could lead to an increase in re-infection rates of COVID-19 convalescents, caused by virus variants that escape humoral and cell-mediated immune responses. Furthermore, they reinforce the potential benefit of booster vaccination that is tuned to the active variants.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261234

RESUMO

Increasing evidence suggests immune dysregulation in individuals recovering from SARS- CoV-2 infection. We have undertaken an integrated analysis of immune responses at a transcriptional, cellular, and serological level at 12, 16, and 24 weeks post-infection (wpi) in 69 individuals recovering from mild, moderate, severe, or critical COVID-19. Anti-Spike and anti-RBD IgG responses were largely stable up to 24wpi and correlated with disease severity. Deep immunophenotyping revealed significant differences in multiple innate (NK cells, LD neutrophils, CXCR3+ monocytes) and adaptive immune populations (T helper, T follicular helper and regulatory T cells) in COVID-19 convalescents compared to healthy controls, which were most strongly evident at 12 and 16wpi. RNA sequencing suggested ongoing immune and metabolic dysregulation in convalescents months after infection. Variation in the rate of recovery from infection at a cellular and transcriptional level may explain the persistence of symptoms associated with long COVID in some individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...