Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 144(15): 2810-2823, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28684624

RESUMO

In vertebrates, cranial placodes contribute to all sense organs and sensory ganglia and arise from a common pool of Six1/Eya2+ progenitors. Here we dissect the events that specify ectodermal cells as placode progenitors using newly identified genes upstream of the Six/Eya complex. We show in chick that two different tissues, namely the lateral head mesoderm and the prechordal mesendoderm, gradually induce placode progenitors: cells pass through successive transcriptional states, each identified by distinct factors and controlled by different signals. Both tissues initiate a common transcriptional state but over time impart regional character, with the acquisition of anterior identity dependent on Shh signalling. Using a network inference approach we predict the regulatory relationships among newly identified transcription factors and verify predicted links in knockdown experiments. Based on this analysis we propose a new model for placode progenitor induction, in which the initial induction of a generic transcriptional state precedes regional divergence.


Assuntos
Transdução de Sinais/fisiologia , Vertebrados/embriologia , Animais , Comunicação Celular/genética , Comunicação Celular/fisiologia , Embrião de Galinha , Galinhas , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Eletroporação , Gânglios Sensitivos/citologia , Gânglios Sensitivos/embriologia , Gânglios Sensitivos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Análise de Sequência com Séries de Oligonucleotídeos , Codorniz , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vertebrados/metabolismo
2.
Dev Biol ; 345(2): 180-90, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20643116

RESUMO

Crucial components of the vertebrate eye, ear and nose develop from discrete patches of surface epithelium, called placodes, which fold into spheroids and undergo complex morphogenesis. Little is known about how the changes in cell and tissue shapes are coordinated with the acquisition of cell fates. Here we explore whether these processes are regulated by common transcriptional mechanisms in the developing ear. After specification, inner ear precursors elongate to form the placode, which invaginates and is transformed into the complex structure of the adult ear. We show that the transcription factor Pax2 plays a key role in coordinating otic fate and placode morphogenesis, but appears to regulate each process independently. In the absence of Pax2, otic progenitors not only lose otic marker expression, but also fail to elongate due to the loss of apically localised N-cadherin and N-CAM. In the absence of either N-cadherin or N-CAM otic cells lose apical cell-cell contact and their epithelial shape. While misexpression of Pax2 leads to ectopic activation of both adhesion molecules, it is not sufficient to confer otic identity. These observations suggest that Pax2 controls cell shape independently from cell identity and thus acts as coordinator for these processes.


Assuntos
Orelha Interna/embriologia , Fator de Transcrição PAX2/fisiologia , Animais , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular , Embrião de Galinha , Epitélio/embriologia , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Camundongos , Morfogênese , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo
3.
Dev Biol ; 336(2): 327-36, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19781543

RESUMO

In vertebrates, cranial placodes form crucial parts of the sensory nervous system in the head. All cranial placodes arise from a common territory, the preplacodal region, and are identified by the expression of Six1/4 and Eya1/2 genes, which control different aspects of sensory development in invertebrates as well as vertebrates. While So and Eya can induce ectopic eyes in Drosophila, the ability of their vertebrate homologues to induce placodes in non-placodal ectoderm has not been explored. Here we show that Six1 and Eya2 are involved in ectodermal patterning and cooperate to induce preplacodal gene expression, while repressing neural plate and neural crest fates. However, they are not sufficient to induce ectopic sensory placodes in future epidermis. Activation of Six1 target genes is required for expression of preplacodal genes, for normal placode morphology and for placode-specific Pax protein expression. These findings suggest that unlike in the fly where the Pax6 homologue Eyeless acts upstream of Six and Eya, the regulatory relationships between these genes are reversed in early vertebrate placode development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Animais , Embrião de Galinha , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Fator de Transcrição PAX2/genética , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/fisiologia
4.
Mech Dev ; 125(11-12): 947-62, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18801428

RESUMO

In the chick embryo, two methods are now used for studying the developmental role of genes by loss-of-function approaches: vector-based shRNA and morpholino oligonucleotides. Both have the advantage that loss-of-function can be conducted in a spatially and temporally controlled way by focal electroporation. Here, we compare these two methods. We find that the shRNA expressing vectors pRFPRNAi, even when targeting a non-expressed protein like GFP, cause morphological phenotypes, mis-regulation of non-targeted genes and activation of the p53 pathway. These effects are highly reproducible, appear to be independent of the targeting sequence and are particularly severe at primitive streak and early somite stages. By contrast, morpholinos do not cause these effects. We propose that pRFPRNAi should only be used with considerable caution and that morpholinos are a preferable approach for gene knock-down during early chick development.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Técnicas Genéticas , Proteínas Luminescentes/química , Interferência de RNA , Animais , Embrião de Galinha , Primers do DNA/química , Eletroporação , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes/instrumentação , Inativação Gênica , Genes p53 , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Oligonucleotídeos/genética , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...