Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 194(Pt A): 115370, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37598537

RESUMO

Spatial variability of Cd, Cu, Cr, Ni, Zn, Fe, Mn, Pb and metallothionein (MT) concentrations were determined in mesozooplankton samples along the west-east axis of the Cretan Passage in the western Levantine Sea (Eastern Mediterranean). Metal and MT values from the present study are proposed as background levels, due to the lack of substantial anthropogenic activities in the area, where only maritime traffic and atmospheric deposition could be potential sources. Higher concentrations, of both metals and MTs, were recorded mainly at the western stations indicating higher metal bioavailability than in the eastern part. An inverse relationship of the metal zooplankton levels with zooplankton biomass, abundance and vital rates (production, respiration and ingestion rates), as well as salinity, was evident. We discuss the hypothesis that physical and biological characteristics of the marine environment, affecting growth dynamics of phytoplankton and zooplankton communities, may also act on metal uptake in oligotrophic marine systems.


Assuntos
Efeitos Antropogênicos , Metalotioneína , Animais , Mar Mediterrâneo , Disponibilidade Biológica , Biomassa , Metais , Zooplâncton
2.
Toxins (Basel) ; 15(4)2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-37104225

RESUMO

HABs pose a threat to coastal ecosystems, the economic sector and human health, and are expanding globally. However, their influence on copepods, a major connector between primary producers and upper trophic levels, remains essentially unknown. Microalgal toxins can eventually control copepod survival and reproduction by deterring grazing and hence reducing food availability. We present several 24-h experiments in which the globally distributed marine copepod, Acartia tonsa, was exposed to different concentrations of the toxic dinoflagellate, Alexandrium minutum, grown under three N:P ratios (4:1, 16:1 and 80:1), with the simultaneous presence of non-toxic food (the dinoflagellate Prorocentrum micans). The different N:P ratios did not affect the toxicity of A. minutum, probably due to the low toxicity of the tested strain. Production of eggs and pellets as well as ingested carbon appeared to be affected by food toxicity. Toxicity levels in A. minutum also had an effect on hatching success and on the toxin excreted in pellets. Overall, A. minutum toxicity affected the reproduction, toxin excretion and, to an extent, the feeding behavior of A. tonsa. This work indicates that even short-term exposure to toxic A. minutum can impact the vital functions of A. tonsa and might ultimately pose serious threats to copepod recruitment and survival. Still, further investigation is required for identifying and understanding, in particular, the long-term effects of harmful microalgae on marine copepods.


Assuntos
Copépodes , Dinoflagellida , Microalgas , Animais , Humanos , Ecossistema , Toxinas Marinhas/toxicidade , Comportamento Alimentar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...