Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38929703

RESUMO

A number of Phytophthora species have been identified as destructive plant pathogens and invasive species. They have the potential to affect a wide range of host plants and cause diseases in agricultural and forest ecosystems. Two Phytophthora species from rhizosphere soil samples collected from declining Alnus glutinosa in Bulgaria were isolated in the autumn of 2022. They were identified as Phytophthora polonica and Phytophthora hydropathica according to the DNA sequence analysis of the ITS region, as well as their morphological and physiological characteristics. The pathogenicity of both species to common and gray alder was evaluated by the inoculation of detached leaves and cuttings. Experimental data proved that P. polonica and P. hydropathica are able to cause leaf necrosis not only on A. glutinosa from which they were derived, but also on A. incana. No significant deference in the aggressiveness of the studied isolates from both Phytophthora species against the two tested plants was observed. Therefore, P. polonica and P. hydropathica were determined as potential threats for alder ecosystems in the country. This is the first report for the isolation of P. polonica in Bulgaria and represents the most southeastern point of the species distribution in Europe.

2.
Mol Plant Pathol ; 25(4): e13450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590129

RESUMO

Phytophthora pseudosyringae is a self-fertile pathogen of woody plants, particularly associated with tree species from the genera Fagus, Notholithocarpus, Nothofagus and Quercus, which is found across Europe and in parts of North America and Chile. It can behave as a soil pathogen infecting roots and the stem collar region, as well as an aerial pathogen infecting leaves, twigs and stem barks, causing particular damage in the United Kingdom and western North America. The population structure, migration and potential outcrossing of a worldwide collection of isolates were investigated using genotyping-by-sequencing. Coalescent-based migration analysis revealed that the North American population originated from Europe. Historical gene flow has occurred between the continents in both directions to some extent, yet contemporary migration is overwhelmingly from Europe to North America. Two broad population clusters dominate the global population of the pathogen, with a subgroup derived from one of the main clusters found only in western North America. Index of association and network analyses indicate an influential level of outcrossing has occurred in this preferentially inbreeding, homothallic oomycete. Outcrossing between the two main population clusters has created distinct subgroups of admixed individuals that are, however, less common than the main population clusters. Differences in life history traits between the two main population clusters should be further investigated together with virulence and host range tests to evaluate the risk each population poses to natural environments worldwide.


Assuntos
Phytophthora , Humanos , Filogeografia , Phytophthora/genética , Doenças das Plantas , Plantas , Árvores
3.
IMA Fungus ; 12(1): 16, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34193315

RESUMO

The genus Phytophthora comprises many economically and ecologically important plant pathogens. Hybrid species have previously been identified in at least six of the 12 phylogenetic clades. These hybrids can potentially infect a wider host range and display enhanced vigour compared to their progenitors. Phytophthora hybrids therefore pose a serious threat to agriculture as well as to natural ecosystems. Early and correct identification of hybrids is therefore essential for adequate plant protection but this is hampered by the limitations of morphological and traditional molecular methods. Identification of hybrids is also important in evolutionary studies as the positioning of hybrids in a phylogenetic tree can lead to suboptimal topologies. To improve the identification of hybrids we have combined genotyping-by-sequencing (GBS) and genome size estimation on a genus-wide collection of 614 Phytophthora isolates. Analyses based on locus- and allele counts and especially on the combination of species-specific loci and genome size estimations allowed us to confirm and characterize 27 previously described hybrid species and discover 16 new hybrid species. Our method was also valuable for species identification at an unprecedented resolution and further allowed correct naming of misidentified isolates. We used both a concatenation- and a coalescent-based phylogenomic method to construct a reliable phylogeny using the GBS data of 140 non-hybrid Phytophthora isolates. Hybrid species were subsequently connected to their progenitors in this phylogenetic tree. In this study we demonstrate the application of two validated techniques (GBS and flow cytometry) for relatively low cost but high resolution identification of hybrids and their phylogenetic relations.

4.
Mycologia ; 113(4): 734-747, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33974519

RESUMO

During an investigation of rivers in Bulgaria, an isolate of Phytophthora (RLKam2016/61c) was recovered and initially identified as Phytophthora sansomeana based on internal transcribed spacer region (ITS) sequence data. However, the sequencing of the mitochondrial cytochrome c oxidase subunit I (cox1) gene revealed high similarity to Phytophthora sp. kelmania, and sequencing of other nuclear regions (ß-tubulin [Btub] and translation elongation factor 1-alpha [tef1]) revealed a significant number of polymorphisms, indicating a possible hybridization event. Additional cloning and sequencing of the nuclear ITS and Btub regions showed the presence of two distinct groups of alleles, one of which was highly similar to P. sansomeana, whereas the other was similar to a species complex that includes Phytophthora sp. kelmania. Therefore, the new hybrid was named Phytophthora × sansomeana. It is characterized by fast growth on V8 juice agar (V8A) and carrot agar (CA), moderate aerial mycelium with radiate pattern of the colonies and relatively slower growth rate on malt extract agar (MEA) and potato dextrose agar (PDA), and petaloid to rosaceous pattern of the colonies with fluffy aerial mycelium. The optimum growth temperature for P. × sansomeana was at 25 C, with an average growth rate of 9 mm per day. Abundant sporangium formation of the isolate in spring water was observed, but the hybrid was sterile in culture. Pathogenicity analyses of the hybrid were conducted in comparison with the most closely related subclade 8a species from our collection, P. pseudocryptogea. The inhibition effect on the root growth of young seedlings of two legumes, common pea and vetch, as well as on cuttings of the ornamental plant coleus induced by both phytopathogens was significant. No effect of either the new hybrid or P. pseudocryptogea on the growth of maize seedlings was observed.


Assuntos
Phytophthora , Europa (Continente) , Filogenia , Phytophthora/genética , Plantas
5.
Plant Physiol Biochem ; 84: 251-260, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25306528

RESUMO

A novel cold-inducible GSK3/shaggy-like kinase, TaSK5, was isolated from winter wheat using a macroarray-based differential screening approach. TaSK5 showed high similarity to Arabidopsis subgroup I GSK3/shaggy-like kinases ASK-alpha, AtSK-gamma and ASK-epsilon. RNA gel blot analyses revealed TaSK5 induction by cold and NaCl treatments and to a lesser extent by drought treatment. TaSK5 functionally complemented the cold- and salt-sensitive phenotypes of a yeast GSK3/shaggy-like kinase mutant, △mck1. Transgenic Arabidopsis plants overexpressing TaSK5 cDNA showed enhanced tolerance to salt and drought stresses. By contrast, the tolerance of the transgenic plants to freezing stress was not altered. Microarray analysis revealed that a number of abiotic stress-inducible genes were constitutively induced in the transgenic Arabidopsis plants, suggesting that TaSK5 may function in a novel signal transduction pathway that appears to be unrelated to DREB1/CBF regulon and may involve crosstalk between abiotic and hormonal signals.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Secas , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Cloreto de Sódio/farmacologia , Triticum/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Plantas Geneticamente Modificadas/genética , Triticum/genética
6.
Z Naturforsch C J Biosci ; 65(3-4): 231-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20469643

RESUMO

A purified thermostable gellan lyase, produced by a thermophilic bacterium, Geobacillus stearothermophilus 98, was characterized in relation to its physicochemical properties. The gellan lyase was established to have a molecular weight of 216 kDa, defined by capillary gel electrophoresis. Amino acid analysis revealed high quantities of Lys, His, Ala, Val, Ile, Glx, and Pro residues. The circular dichroism revealed 45% beta-structure and practically lack of a-spiral domains. Kinetic studies showed high affinity of the enzyme to gellan as a substrate (Km = 0.21 microM). The thermal denaturation investigated by cicular dichroism showed a highly cooperative transition with a midpoint (Tm) at about 75 degrees C. A single product was identified after enzyme action on gellan. Large exothermic aggregation near Tm was observed by differential scanning calorimetry. Two types of gellan lyase crystals were reproducibly isolated.


Assuntos
Bacillus/enzimologia , Geobacillus stearothermophilus/enzimologia , Polissacarídeo-Liases/química , Aminoácidos/análise , Cromatografia em Camada Fina , Dicroísmo Circular , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Cinética , Polissacarídeo-Liases/isolamento & purificação , Polissacarídeo-Liases/metabolismo , Termodinâmica
7.
Indian J Biochem Biophys ; 46(5): 383-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20027868

RESUMO

Oxidation of oxymyoglobin [MbO2(Fe2+)] by isoplastocyanins a (PCa) and b (PCb) was experimentally investigated and the corresponding redox reaction was modeled using the physicochemical parameters of the isoforms to study the effect of the dimorphism. The kinetic curve of oxidation of MbO2 (Fe2+) by oxidized PCa [PCa(Cu2+)] and PCb [PCb(Cu2+)] and the pH-dependence of the rate constant kI were determined. In the range of pH 4.8-9.0, PCb reacts with higher k1, compared with PCa. For example, at pH 7.0, k1(PCb) = 4 x 10(2) M(-1)s(-1), whereas k1(PCa)= 2 x 10(2) M(-1)S(-1). The observed values of deltaE(0) for the reaction pairs Mb-PCa and Mb-PCb were -304 mV and -319 mV, respectively. The effect of the ionic strength (mu) on the rate of the electron transfer was also studied. It was found that: (i) the net charge Z1 of PCa and PCb fully corresponds to that calculated by their primary structures and Z2 of Mb corresponds to that calculated by its titration curve; (ii) the In k as function of mean square of mu was similar for both PCa and PCb; (iii) the curve of the reaction PCb <----(e(-1)) Mb (pH 7.0) wasshifted towards higher values of k, in agreement with the larger net negative charge of PCb; and (iv) the character of the electrostatic interactions remained unchanged by a replacement of PCa by PCb and by the change of pH from 7.0 to 4.8.


Assuntos
Mioglobina/metabolismo , Plastocianina/metabolismo , Populus , Animais , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar
8.
Z Naturforsch C J Biosci ; 64(5-6): 399-404, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19678546

RESUMO

The redox potentials of poplar plastocyanins a and b (PCa, PCb) were determined by spectrophotometric titrations of their reduced forms with [Fe(CN)6]3-. It was found that the two isoforms have the following millimolar extinction coefficients epsilon597 equilibrium constants Keq of one-electron exchange with [Fe(CN)6]4-/[Fe(CN)6]3-, and standard electron potentials E0: PCa: epsilon597 = (4.72 +/- 0.08) mM(-1) cm(-1), Keq = 0.133 +/- 0.009, E0' = (354 +/- 11) mV; PCb: epsilon597 = (5.23 +/- 0.16) mM(-1) cm(-1), Keq = 0.175 +/- 0.010, E0' = (363 +/- 12) mV. The pH dependence of the redox potential of PCb was studied too. It was found, that the value of E0' for PCb is constant in the pH range 6.5-9.5, but decreases in the range 4.8-6.5. On the whole, the dependence resembles that of PC from some well-known plant species, including poplar PCa. The changes of E0' in the pH-dependent region for poplar PCb, however, are smaller and are 13 mV per pH unit, whereas in the other well-known plant species the changes are about 50-60 mV per pH unit. It has been assumed that the weaker pH dependence of EO' of PCb accounts for some structural differences between PCa and PCb.


Assuntos
Plastocianina/química , Populus/química , Cucurbita/química , Eucariotos/química , Concentração de Íons de Hidrogênio , Oxirredução , Plastocianina/isolamento & purificação , Espectrofotometria
9.
J Mol Biol ; 373(4): 1032-46, 2007 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17897675

RESUMO

Human centrin 2 (HsCen2), an EF-hand calcium binding protein, plays a regulatory role in the DNA damage recognition during the first steps of the nucleotide excision repair. This biological action is mediated by the binding to a short fragment (N847-R863) from the C-terminal region of xeroderma pigmentosum group C (XPC) protein. This work presents a detailed structural and energetic characterization of the HsCen2/XPC interaction. Using a truncated form of HsCen2 we obtained a high resolution (1.8 A) X-ray structure of the complex with the peptide N847-R863 from XPC. Structural and thermodynamic analysis of the interface revealed the existence of both electrostatic and apolar inter-molecular interactions, but the binding energy is mainly determined by the burial of apolar bulky side-chains into the hydrophobic pocket of the HsCen2 C-terminal domain. Binding studies with various peptide variants showed that XPC residues W848 and L851 constitute the critical anchoring side-chains. This enabled us to define a minimal centrin binding peptide variant of five residues, which accounts for about 75% of the total free energy of interaction between the two proteins. Immunofluorescence imaging in HeLa cells demonstrated that HsCen2 binding to the integral XPC protein may be observed in living cells, and is determined by the same interface residues identified in the X-ray structure of the complex. Overexpression of XPC perturbs the cellular distribution of HsCen2, by inducing a translocation of centrin molecules from the cytoplasm to the nucleus. The present data confirm that the in vitro structural features of the centrin/XPC peptide complex are highly relevant to the cellular context.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/química , Termodinâmica , Sítios de Ligação , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Xeroderma Pigmentoso/metabolismo
10.
J Bioinform Comput Biol ; 5(3): 693-715, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17688312

RESUMO

In this study, we address the issue of performing meaningful pK(a) calculations using homology modeled three-dimensional (3D) structures and analyze the possibility of using the calculated pK(a) values to detect structural defects in the models. For this purpose, the 3D structure of each member of five large protein families of a bacterial nucleoside monophosphate kinases (NMPK) have been modeled by means of homology-based approach. Further, we performed pK(a) calculations for the each model and for the template X-ray structures. Each bacterial NMPK family used in the study comprised on average 100 members providing a pool of sequences and 3D models large enough for reliable statistical analysis. It was shown that pK(a) values of titratable groups, which are highly conserved within a family, tend to be conserved among the models too. We demonstrated that homology modeled structures with sequence identity larger than 35% and gap percentile smaller than 10% can be used for meaningful pK(a) calculations. In addition, it was found that some highly conserved titratable groups either exhibit large pK(a) fluctuations among the models or have pK(a) values shifted by several pH units with respect to the pK(a) calculated for the X-ray structure. We demonstrated that such case usually indicates structural errors associated with the model. Thus, we argue that pK(a) calculations can be used for assessing the quality of the 3D models by monitoring fluctuations of the pK(a) values for highly conserved titratable residues within large sets of homologous proteins.


Assuntos
Proteínas de Bactérias/química , Biologia Computacional , Modelos Moleculares , Núcleosídeo-Fosfato Quinase/química , Proteínas de Bactérias/genética , Simulação por Computador , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Imageamento Tridimensional , Núcleosídeo-Fosfato Quinase/genética , Conformação Proteica , Alinhamento de Sequência , Eletricidade Estática
11.
Int J Biol Macromol ; 41(1): 114-9, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17320167

RESUMO

The nucleoside monophosphate kinases (NMPK) are important enzymes that control the ratio of mono- and di-phosphate nucleosides and participate in gene regulation and signal transduction in the cell. However, despite their importance only several 3D structures were experimentally determined in contrast to the wealth of sequences available for each of the NMPK families. To fill this gap we present a Web-based database containing structural models for all proteins of the five bacterial nucleoside monophosphate kinase (bNMPK) families. The models were computed by means of homology-based approach using a few experimentally determined bNMPK structures. The database also contains pK(a) values and their components calculated for the homology-based 3D models, which is a unique feature of the database. The BActerial Nucleoside MOnophosphate KInases (BANMOKI) database is freely accessible (http://www.ces.clemson.edu/compbio/banmoki) and offers an easy user-friendly interface for browsing, searching and downloading content of the database. The users can investigate, using the searching tools of the database, the properties of the bNMP kinases in respect to sequence composition, electrostatic interactions and structural differences.


Assuntos
Bactérias/enzimologia , Bases de Dados de Proteínas , Núcleosídeo-Fosfato Quinase/química , Bactérias/genética , Fenômenos Biofísicos , Biofísica , Simulação por Computador , Internet , Modelos Moleculares , Núcleosídeo-Fosfato Quinase/genética , Alinhamento de Sequência , Eletricidade Estática
12.
Artigo em Inglês | MEDLINE | ID: mdl-16820684

RESUMO

Centrins are highly conserved calcium-binding proteins involved in the nucleotide-excision repair pathway as a subunit of the heterotrimer including the XPC and hHR23B proteins. A complex formed by a Ca2+-bound human centrin 2 construct (the wild type lacking the first 25 amino acids) with a 17-mer peptide derived from the XPC sequence (residues Asn847-Arg863) was crystallized. Data were collected to 1.65 angstroms resolution from crystals grown in 30% monomethyl polyethylene glycol (MPEG) 500, 100 mM NaCl and 100 mM Bicine pH 9.0. Crystals are monoclinic and belong to space group C2, with two molecules in the asymmetric unit. The unit-cell parameters are a = 60.28, b = 59.42, c = 105.14 angstroms, alpha = gamma = 90, beta = 94.67 degrees. A heavy-atom derivative was obtained by co-crystallization with Sr2+. The substitution was rationalized by calorimetry experiments, which indicate a binding constant for Sr2+ of 4.0 x 10(4) M(-1).


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Calorimetria , Cristalização , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Transglutaminases/química , Transglutaminases/metabolismo , Difração de Raios X
13.
Planta ; 223(6): 1207-18, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16320069

RESUMO

A novel cold-induced cystatin cDNA clone (TaMDC1) was isolated from cold acclimated winter wheat crown tissue by using a macroarray-based differential screening method. The deduced amino acid sequence consisted of a putative N-terminal secretory signal peptide of 37 amino acids and a mature protein (mTaMDC1) with a molecular mass of 23 kDa. The mTaMDC1 had a highly conserved N-terminal cystatin domain and a long C-terminal extension containing a second region, which exhibited partial similarity to the cystatin domain. The recombinant mTaMDC1 was purified from Escherichia coli and its cysteine proteinase inhibitory activity against papain was analyzed. The calculated Ki value of 5.8 x 10(-7) M is comparable to those reported for other phytocystatins. Northern and western blot analyses showed elevated expression of TaMDC1 mRNA and protein during cold acclimation of wheat. In addition to cold, accumulation of the TaMDC1 message was induced by other abiotic stresses including drought, salt and ABA treatment. Investigation of in vitro antifungal activity of mTaMDC1 showed strong inhibition on the mycelium growth of the snow mold fungus Microdochium nivale. Hyphae growth was totally inhibited in the presence of 50 mug/ml mTaMDC1 and morphological changes such as swelling, fragmentation and sporulation of the fungus were observed. The mechanisms of the in vitro antifungal effects and the possible involvement of TaMDC1 in cold induced snow mold resistance of winter wheat are discussed.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Temperatura Baixa , Cistatinas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Proteínas de Plantas/farmacologia , Triticum/microbiologia , Sequência de Aminoácidos , Antifúngicos/química , Antifúngicos/farmacologia , Ascomicetos/citologia , Ascomicetos/efeitos dos fármacos , Sequência de Bases , Cistatinas/química , Cistatinas/metabolismo , Inibidores de Cisteína Proteinase/química , DNA Complementar/análise , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Triticum/metabolismo
14.
Proteins ; 62(2): 489-500, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16288457

RESUMO

Bacterial nucleoside monophosphate (NMP) kinases, which convert NMPs to nucleoside diphosphates (NDP), are investigated as potential antibacterial targets against pathogenic bacteria. Herein, we report the biochemical and structural characterization of GMP kinase from Mycobacterium tuberculosis (GMPKMt). GMPKMt is a monomer with an unusual specificity for ATP as a phosphate donor, a lower catalytic efficiency compared with eukaryotic GMPKs, and it carries two redox-sensitive cysteines in the central CORE domain. These properties were analyzed in the light of the high-resolution crystal structures of unbound, GMP-bound, and GDP-bound GMPKMt. The latter structure was obtained in both an oxidized form, in which the cysteines form a disulfide bridge, and a reduced form which is expected to correspond to the physiological enzyme. GMPKMt has a modular domain structure as most NMP kinases. However, it departs from eukaryotic GMPKs by the unusual conformation of its CORE domain, and by its partially open LID and GMP-binding domains which are the same in the apo-, GMP-bound, and GDP-bound forms. GMPKMt also features a unique GMP binding site which is less close-packed than that of mammalian GMPKs, and in which the replacement of a critical tyrosine by a serine removes a catalytic interaction. In contrast, the specificity of GMPKMt for ATP may be a general feature of GMPKs because of an invariant structural motif that recognizes the adenine base. Altogether, differences in domain dynamics and GMP binding between GMPKMt and mammalian GMPKs should reveal clues for the design of GMPKMt-specific inhibitors.


Assuntos
Guanosina Monofosfato/metabolismo , Guanilato Quinases/química , Guanilato Quinases/metabolismo , Mycobacterium tuberculosis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Clonagem Molecular , Cristalografia por Raios X , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanilato Quinases/genética , Cinética , Mycobacterium tuberculosis/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
15.
J Mol Biol ; 352(5): 1044-59, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16140325

RESUMO

Guanosine monophosphate kinases (GMPKs), which catalyze the phosphorylation of GMP and dGMP to their diphosphate form, have been characterized as monomeric enzymes in eukaryotes and prokaryotes. Here, we report that GMPK from Escherichia coli (ecGMPK) assembles in solution and in the crystal as several different oligomers. Thermodynamic analysis of ecGMPK using differential scanning calorimetry shows that the enzyme is in equilibrium between a dimer and higher order oligomers, whose relative amounts depend on protein concentration, ionic strength, and the presence of ATP. Crystallographic structures of ecGMPK in the apo, GMP and GDP-bound forms were solved at 3.2A, 2.9A and 2.4A resolution, respectively. ecGMPK forms a hexamer with D3 symmetry in all crystal forms, in which the two nucleotide-binding domains are able to undergo closure comparable to that of monomeric GMPKs. The 2-fold and 3-fold interfaces involve a 20-residue C-terminal extension and a sequence signature, respectively, that are missing from monomeric eukaryotic GMPKs, explaining why ecGMPK forms oligomers. These signatures are found in GMPKs from proteobacteria, some of which are human pathogens. GMPKs from these bacteria are thus likely to form the same quaternary structures. The shift of the thermodynamic equilibrium towards the dimer at low ecGMPK concentration together with the observation that inter-subunit interactions partially occlude the ATP-binding site in the hexameric structure suggest that the dimer may be the active species at physiological enzyme concentration.


Assuntos
Escherichia coli/enzimologia , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Guanosina Monofosfato/metabolismo , Guanilato Quinases , Temperatura Alta , Humanos , Dados de Sequência Molecular , Núcleosídeo-Fosfato Quinase/genética , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
16.
J Biol Chem ; 278(41): 40252-61, 2003 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-12890685

RESUMO

Human centrin 2 (HsCen2), a member of the EF-hand superfamily of Ca2+-binding proteins, is commonly associated with centrosome-related structures. The protein is organized in two domains, each containing two EF-hand motifs, but only the C-terminal half exhibits Ca2+ sensor properties. A significant fraction of HsCen2 is localized in the nucleus, where it was recently found associated with the xeroderma pigmentosum group C protein (XPC), a component of the nuclear excision repair pathway. Analysis of the XPC sequence (940 residues), using a calmodulin target recognition software, enabled us to predict two putative binding sites. The binding properties of the two corresponding peptides were investigated by isothermal titration calorimetry. Only one of the peptides (P1-XPC) interacts strongly (Ka = 2.2 x 10(8) m-1, stoichiometry 1:1) with HsCen2 in a Ca2+-dependent manner. This peptide also binds, with a similar affinity (Ka = 1.1 x 10(8) m-1) to a C-terminal construct of HsCen2, indicating that the interaction with the integral protein is mainly the result of the contribution of the C-terminal half. The second peptide (P2-XPC) failed to show any detectable binding either to HsCen2 or to its C-terminal lobe. The two peptides interact with different affinities and mechanisms with calmodulin. Circular dichroism and nuclear magnetic resonance were used to structurally characterize the complex formed by the C-terminal domain of HsCen2 with P1-XPC.


Assuntos
Calmodulina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Humanos , Técnicas In Vitro , Cinética , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Z Naturforsch C J Biosci ; 58(3-4): 288-94, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12710743

RESUMO

Unfolding/folding transitions of recombinant human interferon-gamma (hIFNgamma) in urea and guanidine chloride (Gn.HCl) solutions were studied by fluorescence spectroscopy. At pH 7.4 Gn.HCl was a much more efficient denaturant (midpoint of unfolding C* = 1.1 M and deltaG0 = 13.4 kJ/mol) than urea (C* = 2.8 M and deltaG0 = 11.7 kJ/mol). The close deltaG0 values indicate that the contribution of electrostatic interactions to the stability of hIFNgamma is insignificant. Both the pH dependence of the fluorescence intensity and the unfolding experiments in urea at variable pH showed that hIFNgamma remains native in the pH range of 4.8-9.5. Using two quenchers, iodide and acrylamide, and applying the Stern-Volmer equation, a cluster of acidic groups situated in close proximity to the single tryptophan residue was identified. Based on the denaturation experiments at different pH values and on our earlier calculations of the electrostatic interactions in hIFNgamma, we assume that the protonation of Asp63 causes conformational changes having a substantial impact on the stability of hIFNgamma.


Assuntos
Interferon gama/química , Soluções Tampão , Clonagem Molecular , Estabilidade de Medicamentos , Escherichia coli , Humanos , Desnaturação Proteica , Proteínas Recombinantes , Espectrometria de Fluorescência
18.
Biochemistry ; 41(11): 3605-12, 2002 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11888276

RESUMO

Activation of small G proteins of the Arf family is initiated by guanine nucleotide exchange factors whose catalytic Sec7 domain stimulates the dissociation of the tightly bound GDP nucleotide. The exchange reaction involves distinct sequential steps that can be trapped by the noncompetitive inhibitor brefeldin A, by mutation of an invariant catalytic glutamate, or by removal of guanine nucleotides. Arf-GDP retains most characteristics of its GDP-bound form at the initial low-affinity Arf-GDP-Sec7 step. It then undergoes large conformational changes toward its GTP-bound form at the next step, and eventually dissociates GDP to form a nucleotide-free high-affinity Arf-Sec7 complex at the last step. Thus, Arf proteins evolve through different conformations that must be accommodated by Sec7 domains in the course of the reaction. Here the contribution of the flexibility of Sec7 domains to the exchange reaction was investigated with the crystal structure of the unbound Sec7 domain of yeast Gea2. Comparison with Gea2 in complex with nucleotide-free Arf1 Delta 17 [Goldberg, J. (1998) Cell 95, 237-248] reveals that Arf induces closure of the two subdomains that form the sides of its active site. Several residues that determine sensitivity to brefeldin A are involved in interdomain and local movements, pointing to the importance of the flexibility of Sec7 domains for the inhibition mechanism. Altogether, this suggests a model for the initial steps of the exchange reaction where Arf docks onto the C-terminal domain of the Sec7 domain before closure of the N-terminal domain positions the catalytic glutamate to complete the reaction.


Assuntos
Brefeldina A/farmacologia , Proteínas Fúngicas/fisiologia , Proteínas de Saccharomyces cerevisiae , Domínio Catalítico , Proteínas Fúngicas/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...