Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199518

RESUMO

An evaluation of hydrothermal liquefaction (HTL) char is investigated in this work. Morphological studies, N2 adsorption behavior, FTIR analysis, thermal behavior, and elemental composition are studied. The HTL char yield showed an increase with higher operating temperatures. It increased from 11.02% to 33% when the temperature increased from 573 K to 623 K. At lower temperatures, the residence time showed an impact on the yield, while close to the critical point, residence time became less impactful. Elemental analysis showed that both higher operating temperatures and longer residence times increased the nitrogen content of the chars from 0.32% to 0.51%. FTIR analysis suggested the char became more aromatic with the higher temperatures. The aliphatic groups present diminished drastically with the increasing temperature. Residence time did not show a significant impact as much as the temperature when considering the functional group elimination. An increase in operating temperatures and residence times produced thermally stable chars. HTL char produced at the lowest operating temperature and showed both the highest surface area and pore volume. When temperature and residence time increase, more polyaromatic char is produced due to carbonization.

2.
Materials (Basel) ; 12(23)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771298

RESUMO

Transition metal chalcogenides have intensively focused on photocatalytic hydrogen production for a decade due to their stronger edge and the quantum confinement effect. This work mainly focuses on synthesis and hydrogen production efficiencies of cobalt disulfide (CoS2)-embedded TiO2 nanocomposites. Materials are synthesized by using a hydrothermal approach and the hydrogen production efficiencies of pristine CoS2, TiO2 nanoparticles and CoS2/TiO2 nanocomposites are compared under UV irradiation. A higher amount of hydrogen production (2.55 mmol g-1) is obtained with 10 wt.% CoS2/TiO2 nanocomposite than pristineTiO2 nanoparticles, whereas no hydrogen production was observed with pristine CoS2 nanoparticles. This result unveils that the metal dichalcogenide-CoS2 acts as an effective co-catalyst and nanocrystalline TiO2 serves as an active site by effectively separating the photogenerated electron-hole pair. This study lays down a new approach for developing transition metal dichalcogenide materials with significant bandgaps that can effectively harness solar energy for hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...