Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(9)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37766339

RESUMO

Commencing in December 2019 with the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), three years of the coronavirus disease 2019 (COVID-19) pandemic have transpired. The virus has consistently demonstrated a tendency for evolutionary adaptation, resulting in mutations that impact both immune evasion and transmissibility. This ongoing process has led to successive waves of infections. This study offers a comprehensive assessment spanning genetic, phylogenetic, phylodynamic, and phylogeographic dimensions, focused on the trajectory of the SARS-CoV-2 epidemic in Cyprus. Based on a dataset comprising 4700 viral genomic sequences obtained from affected individuals between October 2021 and October 2022, our analysis is presented. Over this timeframe, a total of 167 distinct lineages and sublineages emerged, including variants such as Delta and Omicron (1, 2, and 5). Notably, during the fifth wave of infections, Omicron subvariants 1 and 2 gained prominence, followed by the ascendancy of Omicron 5 in the subsequent sixth wave. Additionally, during the fifth wave (December 2021-January 2022), a unique set of Delta sequences with genetic mutations associated with Omicron variant 1, dubbed "Deltacron", was identified. The emergence of this phenomenon initially evoked skepticism, characterized by concerns primarily centered around contamination or coinfection as plausible etiological contributors. These hypotheses were predominantly disseminated through unsubstantiated assertions within the realms of social and mass media, lacking concurrent scientific evidence to validate their claims. Nevertheless, the exhaustive molecular analyses presented in this study have demonstrated that such occurrences would likely lead to a frameshift mutation-a genetic aberration conspicuously absent in our provided sequences. This substantiates the accuracy of our initial assertion while refuting contamination or coinfection as potential etiologies. Comparable observations on a global scale dispelled doubt, eventually leading to the recognition of Delta-Omicron variants by the scientific community and their subsequent monitoring by the World Health Organization (WHO). As our investigation delved deeper into the intricate dynamics of the SARS-CoV-2 epidemic in Cyprus, a discernible pattern emerged, highlighting the major role of international connections in shaping the virus's local trajectory. Notably, the United States and the United Kingdom were the central conduits governing the entry and exit of the virus to and from Cyprus. Moreover, notable migratory routes included nations such as Greece, South Korea, France, Germany, Brazil, Spain, Australia, Denmark, Sweden, and Italy. These empirical findings underscore that the spread of SARS-CoV-2 within Cyprus was markedly influenced by the influx of new, highly transmissible variants, triggering successive waves of infection. This investigation elucidates the emergence of new waves of infection subsequent to the advent of highly contagious and transmissible viral variants, notably characterized by an abundance of mutations localized within the spike protein. Notably, this discovery decisively contradicts the hitherto hypothesis of seasonal fluctuations in the virus's epidemiological dynamics. This study emphasizes the importance of meticulously examining molecular genetics alongside virus migration patterns within a specific region. Past experiences also emphasize the substantial evolutionary potential of viruses such as SARS-CoV-2, underscoring the need for sustained vigilance. However, as the pandemic's dynamics continue to evolve, a balanced approach between caution and resilience becomes paramount. This ethos encourages an approach founded on informed prudence and self-preservation, guided by public health authorities, rather than enduring apprehension. Such an approach empowers societies to adapt and progress, fostering a poised confidence rooted in well-founded adaptation.


Assuntos
COVID-19 , Coinfecção , Humanos , SARS-CoV-2/genética , Chipre/epidemiologia , Filogenia , COVID-19/epidemiologia , Genômica , Pandemias
2.
Life (Basel) ; 13(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36836661

RESUMO

Throughout the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continuously evolved, resulting in new variants, some of which possess increased infectivity, immune evasion, and virulence. Such variants have been denoted by the World Health Organization as variants of concern (VOC) because they have resulted in an increased number of cases, posing a strong risk to public health. Thus far, five VOCs have been designated, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), including their sublineages. Next-generation sequencing (NGS) can produce a significant amount of information facilitating the study of variants; however, NGS is time-consuming and costly and not efficient during outbreaks, when rapid identification of VOCs is urgently needed. In such periods, there is a need for fast and accurate methods, such as real-time reverse transcription PCR in combination with probes, which can be used for monitoring and screening of the population for these variants. Thus, we developed a molecular beacon-based real-time RT-PCR assay according to the principles of spectral genotyping. This assay employs five molecular beacons that target ORF1a:ΔS3675/G3676/F3677, S:ΔH69/V70, S:ΔE156/F157, S:ΔΝ211, S:ins214EPE, and S:ΔL242/A243/L244, deletions and an insertion found in SARS-CoV-2 VOCs. This assay targets deletions/insertions because they inherently provide higher discrimination capacity. Here, the design process of the molecular beacon-based real-time RT-PCR assay for detection and discrimination of SARS-CoV-2 is presented, and experimental testing using SARS-CoV-2 VOC samples from reference strains (cultured virus) and clinical patient samples (nasopharyngeal samples), which have been previously classified using NGS, were evaluated. Based on the results, it was shown that all molecular beacons can be used under the same real-time RT-PCR conditions, consequently improving the time and cost efficiency of the assay. Furthermore, this assay was able to confirm the genotype of each of the tested samples from various VOCs, thereby constituting an accurate and reliable method for VOC detection and discrimination. Overall, this assay is a valuable tool that can be used for screening and monitoring the population for VOCs or other emerging variants, contributing to limiting their spread and protecting public health.

3.
Viruses ; 15(1)2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36680148

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 resulted in the coronavirus disease 2019 (COVID-19) pandemic, which has had devastating repercussions for public health. Over the course of this pandemic, the virus has continuously been evolving, resulting in new, more infectious variants that have frequently led to surges of new SARS-CoV-2 infections. In the present study, we performed detailed genetic, phylogenetic, phylodynamic and phylogeographic analyses to examine the SARS-CoV-2 epidemic in Cyprus using 2352 SARS-CoV-2 sequences from infected individuals in Cyprus during November 2020 to October 2021. During this period, a total of 61 different lineages and sublineages were identified, with most falling into three groups: B.1.258 & sublineages, Alpha (B.1.1.7 & Q. sublineages), and Delta (B.1.617.2 & AY. sublineages), each encompassing a set of S gene mutations that primarily confer increased transmissibility as well as immune evasion. Specifically, these lineages were coupled with surges of new infections in Cyprus, resulting in the following: the second wave of SARS-CoV-2 infections in Cyprus, comprising B.1.258 & sublineages, during late autumn 2020/beginning of winter 2021; the third wave, comprising Alpha (B.1.1.7 & Q. sublineages), during spring 2021; and the fourth wave, comprising Delta (B.1.617.2 & AY. sublineages) during summer 2021. Additionally, it was identified that these lineages were primarily imported from and exported to the UK, Greece, and Sweden; many other migration links were also identified, including Switzerland, Denmark, Russia, and Germany. Taken together, the results of this study indicate that the SARS-CoV-2 epidemic in Cyprus was characterized by successive introduction of new lineages from a plethora of countries, resulting in the generation of waves of infection. Overall, this study highlights the importance of investigating the spatiotemporal evolution of the SARS-CoV-2 epidemic in the context of Cyprus, as well as the impact of protective measures placed to mitigate transmission of the virus, providing necessary information to safeguard public health.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Chipre/epidemiologia , Filogenia , COVID-19/epidemiologia , Genômica , Pandemias
4.
Life (Basel) ; 11(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34833022

RESUMO

Emerging infectious viruses have led to global advances in the development of specific and sensitive detection techniques. Viruses have an inherent potential to easily mutate, presenting major hurdles for diagnostics and requiring methods capable of detecting genetically diverse viral strains. One such infectious agent is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in December 2019 and has resulted in the global coronavirus disease 2019 (COVID-19) pandemic. This study presents a real-time reverse transcription PCR (RT-PCR) detection assay for SARS-CoV-2, taking into account its intrinsic polymorphic nature that arises due to genetic drift and recombination, as well as the possibility of continuous and multiple introductions of genetically nonidentical strains into the human population. This advance was achieved by using mismatch-tolerant molecular beacons designed to specifically detect the SARS-CoV-2 S, E, M, and N genes. These were applied to create a simple and reproducible real-time RT-PCR assay, which was validated using external quality control panels (QCMD: CVOP20, WHO: SARS-CoV-2-EQAP-01) and clinical samples. This assay was designed for high target detection accuracy and specificity and can also be readily adapted for the detection of other emerging and rapidly mutating pathogens.

5.
Viruses ; 13(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207490

RESUMO

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in an extraordinary global public health crisis. In early 2020, Cyprus, among other European countries, was affected by the SARS-CoV-2 epidemic and adopted lockdown measures in March 2020 to limit the initial outbreak on the island. In this study, we performed a comprehensive retrospective molecular epidemiological analysis (genetic, phylogenetic, phylodynamic and phylogeographic analyses) of SARS-CoV-2 isolates in Cyprus from April 2020 to January 2021, covering the first ten months of the SARS-CoV-2 infection epidemic on the island. The primary aim of this study was to assess the transmissibility of SARS-CoV-2 lineages in Cyprus. Whole SARS-CoV-2 genomic sequences were generated from 596 clinical samples (nasopharyngeal swabs) obtained from community-based diagnostic testing centers and hospitalized patients. The phylogenetic analyses revealed a total of 34 different lineages in Cyprus, with B.1.258, B.1.1.29, B.1.177, B.1.2, B.1 and B.1.1.7 (designated a Variant of Concern 202012/01, VOC) being the most prevalent lineages on the island during the study period. Phylodynamic analysis showed a highly dynamic epidemic of SARS-CoV-2 infection, with three consecutive surges characterized by specific lineages (B.1.1.29 from April to June 2020; B.1.258 from September 2020 to January 2021; and B.1.1.7 from December 2020 to January 2021). Genetic analysis of whole SARS-CoV-2 genomic sequences of the aforementioned lineages revealed the presence of mutations within the S protein (L18F, ΔH69/V70, S898F, ΔY144, S162G, A222V, N439K, N501Y, A570D, D614G, P681H, S982A and D1118H) that confer higher transmissibility and/or antibody escape (immune evasion) upon the virus. Phylogeographic analysis indicated that the majority of imports and exports were to and from the United Kingdom (UK), although many other regions/countries were identified (southeastern Asia, southern Europe, eastern Europe, Germany, Italy, Brazil, Chile, the USA, Denmark, the Czech Republic, Slovenia, Finland, Switzerland and Pakistan). Taken together, these findings demonstrate that the SARS-CoV-2 infection epidemic in Cyprus is being maintained by a continuous influx of lineages from many countries, resulting in the establishment of an ever-evolving and polyphyletic virus on the island.


Assuntos
COVID-19/epidemiologia , Genoma Viral , Filogenia , SARS-CoV-2/genética , COVID-19/transmissão , Controle de Doenças Transmissíveis , Chipre/epidemiologia , Evolução Molecular , Humanos , Mutação , Nasofaringe/virologia , Filogeografia , RNA Viral/genética , Estudos Retrospectivos , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação
6.
Life (Basel) ; 10(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227939

RESUMO

The human papillomavirus is one of the most common sexually transmitted viruses, and an infection from this virus may become persistent, leading to diseases such as cervical cancer. In the past, cytology-based methods such as the Papanicolaou (Pap) test were imperative to identify the disease at a stage where it can be treated. However, since the 1980s where the etiological association of HPV and cervical cancer was identified, new tests began emerging directed towards identifying the virus. Furthermore, as the biology of HPV along with the relationships with its host are elucidated, these tests and treatments further advance. Recently in Europe, there is a movement towards the implementation of HPV testing methodologies in national screening programs to precede cytological testing. These screening strategies are recommended by the European guidelines and the World Health Organization. This review presents the current HPV testing methodologies, their application in organized population-based cervical cancer screening programs based on the most recent European guidelines, and their implementation status in countries in Europe.

7.
Infect Genet Evol ; 81: 104243, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32061896

RESUMO

Comprehensive PCR assays for the genotypic drug resistance analysis of all HIV-1 antiretroviral agents (reverse transcriptase, protease and integrase inhibitors) are increasingly in demand due to introduction of integrase inhibitors in the first line regimens and the increasing presence of non-B HIV-1 clades around the world. This study focused on the development and evaluation of a new PCR-based assay for the amplification and sequencing of the entire HIV-1 pol region of major circulating group M HIV-1 strains in Europe for genotypic drug resistance analysis. The comprehensive touchdown PCR assay developed in this study utilized HIV-1 RNA extracted from the plasma of blood samples of consenting HIV-1 infected patients in Cyprus, collected from 2017 to 2019. The HIV-1 pol region was amplified by touchdown PCR for both the primary RT-PCR and the secondary PCR steps. Successful PCR amplicons were determined by population DNA sequencing, using the Sanger method and the genotypic drug resistance analysis was performed with the Stanford University HIV Drug Resistance Database Program. The newly developed assay successfully amplified the entire HIV-1 pol region (2844 nucleotides long) of 141 out of 144 samples of group M HIV-1 subtypes and recombinant strains of the Cyprus HIV-1 Transmission Cohort Study (CHICS) isolated from 2017 to 2019 and genotypic analyses were conducted for all currently available HIV-1 reverse transcriptase, protease and integrase inhibitors. The drug resistance, epidemiological and demographic data of these study subjects will be expanded upon in the CHICS (L.G. Kostrikis et al., manuscript in preparation for publication). The newly developed HIV-1 genotypic drug resistance assay would benefit clinical settings, and research focusing on the world-wide spread of HIV-1 drug-resistant strains, especially in geographic regions characterized by polyphyletic HIV-1 infections.


Assuntos
Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/genética , Inibidores de Integrase/uso terapêutico , Inibidores de Proteases/uso terapêutico , Inibidores da Transcriptase Reversa/uso terapêutico , Fármacos Anti-HIV/uso terapêutico , Estudos de Coortes , Feminino , Genótipo , Infecções por HIV/virologia , Humanos , Masculino , RNA Viral/genética
8.
Viruses ; 10(12)2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572620

RESUMO

Cervical cancer is the fourth most frequently occurring cancer in women around the world and can affect them during their reproductive years. Since the development of the Papanicolaou (Pap) test, screening has been essential in identifying cervical cancer at a treatable stage. With the identification of the human papillomavirus (HPV) as the causative agent of essentially all cervical cancer cases, HPV molecular screening tests and HPV vaccines for primary prevention against the virus have been developed. Accordingly, comparative studies were designed to assess the performance of cervical cancer screening methods in order to devise the best screening strategy possible. This review critically assesses the current cervical cancer screening methods as well as the implementation of HPV vaccination in Europe. The most recent European Guidelines and recommendations for organized population-based programs with HPV testing as the primary screening method are also presented. Lastly, the current landscape of cervical cancer screening programs is assessed for both European Union member states and some associated countries, in regard to the transition towards population-based screening programs with primary HPV testing.


Assuntos
Programas de Triagem Diagnóstica , Detecção Precoce de Câncer/métodos , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/administração & dosagem , Vacinação/estatística & dados numéricos , Detecção Precoce de Câncer/estatística & dados numéricos , Europa (Continente)/epidemiologia , União Europeia , Feminino , Humanos , Papillomaviridae/genética , Infecções por Papillomavirus/epidemiologia , Vacinas contra Papillomavirus/uso terapêutico , Guias de Prática Clínica como Assunto , Neoplasias do Colo do Útero/prevenção & controle , Neoplasias do Colo do Útero/virologia , Esfregaço Vaginal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...