Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab ; 140(3): 107657, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37523899

RESUMO

FARS2 encodes the mitochondrial phenylalanyl-tRNA synthetase (mtPheRS), which is essential for charging mitochondrial (mt-) tRNAPhe with phenylalanine for use in intramitochondrial translation. Many biallelic, pathogenic FARS2 variants have been described previously, which are mostly associated with two distinct clinical phenotypes; an early onset epileptic mitochondrial encephalomyopathy or a later onset spastic paraplegia. In this study, we report on a patient who presented at 3 weeks of age with tachypnoea and poor feeding, which progressed to severe metabolic decompensation with lactic acidosis and seizure activity followed by death at 9 weeks of age. Rapid trio whole exome sequencing identified compound heterozygous FARS2 variants including a pathogenic exon 2 deletion on one allele and a rare missense variant (c.593G > T, p.(Arg198Leu)) on the other allele, necessitating further work to aid variant classification. Assessment of patient fibroblasts demonstrated severely decreased steady-state levels of mtPheRS, but no obvious defect in any components of the oxidative phosphorylation system. To investigate the potential pathogenicity of the missense variant, we determined its high-resolution crystal structure, demonstrating a local structural destabilization in the catalytic domain. Moreover, the R198L mutation reduced the thermal stability and impaired the enzymatic activity of mtPheRS due to a lower binding affinity for tRNAPhe and a slower turnover rate. Together these data confirm the pathogenicity of this FARS2 variant in causing early-onset mitochondrial epilepsy.


Assuntos
Epilepsia , Doenças Mitocondriais , Fenilalanina-tRNA Ligase , Humanos , Lactente , Recém-Nascido , Epilepsia/patologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mutação , Fenilalanina-tRNA Ligase/genética , Fenilalanina-tRNA Ligase/química , RNA de Transferência/genética , RNA de Transferência de Fenilalanina/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526660

RESUMO

Human mitochondria contain their own genome, mitochondrial DNA, that is expressed in the mitochondrial matrix. This genome encodes 13 vital polypeptides that are components of the multisubunit complexes that couple oxidative phosphorylation (OXPHOS). The inner mitochondrial membrane that houses these complexes comprises the inner boundary membrane that runs parallel to the outer membrane, infoldings that form the cristae membranes, and the cristae junctions that separate the two. It is in these cristae membranes that the OXPHOS complexes have been shown to reside in various species. The majority of the OXPHOS subunits are nuclear-encoded and must therefore be imported from the cytosol through the outer membrane at contact sites with the inner boundary membrane. As the mitochondrially encoded components are also integral members of these complexes, where does protein synthesis occur? As transcription, mRNA processing, maturation, and at least part of the mitoribosome assembly process occur at the nucleoid and the spatially juxtaposed mitochondrial RNA granules, is protein synthesis also performed at the RNA granules close to these entities, or does it occur distal to these sites? We have adapted a click chemistry-based method coupled with stimulated emission depletion nanoscopy to address these questions. We report that, in human cells in culture, within the limits of our methodology, the majority of mitochondrial protein synthesis is detected at the cristae membranes and is spatially separated from the sites of RNA processing and maturation.


Assuntos
Compartimento Celular , Imageamento Tridimensional , Proteínas Mitocondriais/biossíntese , Biossíntese de Proteínas , Alcinos , Células Cultivadas , DNA Mitocondrial/genética , Glicina/análogos & derivados , Humanos , Cinética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , RNA Mitocondrial/metabolismo , Transdução de Sinais
4.
Neuropediatrics ; 51(3): 178-184, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31779033

RESUMO

BACKGROUND: A homozygous founder mutation in MTPAP/TENT6, encoding mitochondrial poly(A) polymerase (MTPAP), was first reported in six individuals of Old Order Amish descent demonstrating an early-onset, progressive spastic ataxia with optic atrophy and learning difficulties. MTPAP contributes to the regulation of mitochondrial gene expression through the polyadenylation of mitochondrially encoded mRNAs. Mitochondrial mRNAs with severely truncated poly(A) tails were observed in affected individuals, and mitochondrial protein expression was altered. OBJECTIVE: To determine the genetic basis of a perinatal encephalopathy associated with stereotyped neuroimaging and infantile death in three patients from two unrelated families. METHODS: Whole-exome sequencing was performed in two unrelated patients and the unaffected parents of one of these individuals. Variants and familial segregation were confirmed by Sanger sequencing. Polyadenylation of mitochondrial transcripts and de novo synthesis of mitochondrial proteins were assessed in patient's fibroblasts. RESULTS: Compound heterozygous p.Ile428Thr and p.Arg523Trp substitutions in MTPAP were recorded in two affected siblings from one family, and a homozygous p.Ile385Phe missense variant identified in a further affected child from a second sibship. Mitochondrial poly(A) tail analysis demonstrated shorter posttranscriptional additions to the mitochondrial transcripts, as well as an altered expression of mitochondrial proteins in the fibroblasts of the two siblings compared with healthy controls. CONCLUSION: Mutations in MTPAP likely cause an autosomal recessive perinatal encephalopathy with lethality in the first year of life.


Assuntos
Encefalopatias/genética , Encefalopatias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Fibroblastos/metabolismo , Proteínas Mitocondriais/metabolismo , Feminino , Humanos , Lactente , Morte do Lactente , Masculino , Proteínas Mitocondriais/genética , Linhagem , Sequenciamento do Exoma
5.
Biochem Soc Trans ; 47(5): 1429-1436, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31551356

RESUMO

Mitochondria are ubiquitous organelles present in the cytoplasm of all nucleated eukaryotic cells. These organelles are described as arising from a common ancestor but a comparison of numerous aspects of mitochondria between different organisms provides remarkable examples of divergent evolution. In humans, these organelles are of dual genetic origin, comprising ∼1500 nuclear-encoded proteins and thirteen that are encoded by the mitochondrial genome. Of the various functions that these organelles perform, it is only oxidative phosphorylation, which provides ATP as a source of chemical energy, that is dependent on synthesis of these thirteen mitochondrially encoded proteins. A prerequisite for this process of translation are the mitoribosomes. The recent revolution in cryo-electron microscopy has generated high-resolution mitoribosome structures and has undoubtedly revealed some of the most distinctive molecular aspects of the mitoribosomes from different organisms. However, we still lack a complete understanding of the mechanistic aspects of this process and many of the factors involved in post-transcriptional gene expression in mitochondria. This review reflects on the current knowledge and illustrates some of the striking differences that have been identified between mitochondria from a range of organisms.


Assuntos
Evolução Biológica , Mitocôndrias/metabolismo , Animais , Humanos , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo
6.
Hum Mol Genet ; 27(10): 1743-1753, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29518248

RESUMO

LonP1 is a mitochondrial matrix protease whose selective substrate specificity is essential for maintaining mitochondrial homeostasis. Recessively inherited, pathogenic defects in LonP1 have been previously reported to underlie cerebral, ocular, dental, auricular and skeletal anomalies (CODAS) syndrome, a complex multisystemic and developmental disorder. Intriguingly, although classical mitochondrial disease presentations are well-known to exhibit marked clinical heterogeneity, the skeletal and dental features associated with CODAS syndrome are pathognomonic. We have applied whole exome sequencing to a patient with congenital lactic acidosis, muscle weakness, profound deficiencies in mitochondrial oxidative phosphorylation associated with loss of mtDNA copy number and MRI abnormalities consistent with Leigh syndrome, identifying biallelic variants in the LONP1 (NM_004793.3) gene; c.1693T > C predicting p.(Tyr565His) and c.2197G > A predicting p.(Glu733Lys); no evidence of the classical skeletal or dental defects observed in CODAS syndrome patients were noted in our patient. In vitro experiments confirmed the p.(Tyr565His) LonP1 mutant alone could not bind or degrade a substrate, consistent with the predicted function of Tyr565, whilst a second missense [p.(Glu733Lys)] variant had minimal effect. Mixtures of p.(Tyr565His) mutant and wild-type LonP1 retained partial protease activity but this was severely depleted when the p.(Tyr565His) mutant was mixed with the p.(Glu733Lys) mutant, data consistent with the compound heterozygosity detected in our patient. In summary, we conclude that pathogenic LONP1 variants can lead to a classical mitochondrial disease presentations associated with severe biochemical defects in oxidative phosphorylation in clinically relevant tissues.


Assuntos
Proteases Dependentes de ATP/genética , Anormalidades Craniofaciais/genética , Anormalidades do Olho/genética , Transtornos do Crescimento/genética , Luxação Congênita de Quadril/genética , Doença de Leigh/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Osteocondrodisplasias/genética , Anormalidades Dentárias/genética , Biópsia , Linhagem Celular , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/fisiopatologia , Exoma/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/fisiopatologia , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/fisiopatologia , Luxação Congênita de Quadril/metabolismo , Luxação Congênita de Quadril/fisiopatologia , Humanos , Lactente , Doença de Leigh/metabolismo , Doença de Leigh/fisiopatologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Músculo Esquelético/fisiopatologia , Mutação , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/fisiopatologia , Fosforilação Oxidativa , Anormalidades Dentárias/metabolismo , Anormalidades Dentárias/fisiopatologia , Sequenciamento do Exoma
7.
Hum Mutat ; 39(4): 563-578, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29314548

RESUMO

In recent years, an increasing number of mitochondrial disorders have been associated with mutations in mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs), which are key enzymes of mitochondrial protein synthesis. Bi-allelic functional variants in VARS2, encoding the mitochondrial valyl tRNA-synthetase, were first reported in a patient with psychomotor delay and epilepsia partialis continua associated with an oxidative phosphorylation (OXPHOS) Complex I defect, before being described in a patient with a neonatal form of encephalocardiomyopathy. Here we provide a detailed genetic, clinical, and biochemical description of 13 patients, from nine unrelated families, harboring VARS2 mutations. All patients except one, who manifested with a less severe disease course, presented at birth exhibiting severe encephalomyopathy and cardiomyopathy. Features included hypotonia, psychomotor delay, seizures, feeding difficulty, abnormal cranial MRI, and elevated lactate. The biochemical phenotype comprised a combined Complex I and Complex IV OXPHOS defect in muscle, with patient fibroblasts displaying normal OXPHOS activity. Homology modeling supported the pathogenicity of VARS2 missense variants. The detailed description of this cohort further delineates our understanding of the clinical presentation associated with pathogenic VARS2 variants and we recommend that this gene should be considered in early-onset mitochondrial encephalomyopathies or encephalocardiomyopathies.


Assuntos
Antígenos HLA/genética , Encefalomiopatias Mitocondriais , ATPases Mitocondriais Próton-Translocadoras/deficiência , Valina-tRNA Ligase/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/metabolismo , Encefalomiopatias Mitocondriais/fisiopatologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação de Sentido Incorreto , Fosforilação Oxidativa , Filogenia
8.
Wellcome Open Res ; 2: 116, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29387808

RESUMO

Background: Gene expression in human mitochondria has various idiosyncratic features. One of these was recently revealed as the unprecedented recruitment of a mitochondrially-encoded tRNA as a structural component of the large mitoribosomal subunit. In porcine particles this is mt-tRNA Phe whilst in humans it is mt-tRNA Val. We have previously shown that when a mutation in mt-tRNA Val causes very low steady state levels, there is preferential recruitment of mt-tRNA Phe. We have investigated whether this altered mitoribosome affects intra-organellar protein synthesis. Methods: By using mitoribosomal profiling we have revealed aspects of mitoribosome behaviour with its template mt-mRNA under both normal conditions as well as those where the mitoribosome has incorporated mt-tRNA Phe. Results: Analysis of the mitoribosome residency on transcripts under control conditions reveals that although mitochondria employ only 22 mt-tRNAs for protein synthesis, the use of non-canonical wobble base pairs at codon position 3 does not cause any measurable difference in mitoribosome occupancy irrespective of the codon. Comparison of the profile of aberrant mt-tRNA Phe containing mitoribosomes with those of controls that integrate mt-tRNA Val revealed that the impaired translation seen in the latter was not due to stalling on triplets encoding either of these amino acids. The alterations in mitoribosome interactions with start codons was not directly attributable to the either the use of non-cognate initiation codons or the presence or absence of 5' leader sequences, except in the two bicistronic RNA units, RNA7 and RNA14 where the initiation sites are internal. Conclusions: These data report the power of mitoribosomal profiling in helping to understand the subtleties of mammalian mitochondrial protein synthesis. Analysis of profiles from the mutant mt-tRNA Val cell line suggest that despite mt-tRNA Phe being preferred in the porcine mitoribosome, its integration into the human counterpart results in a suboptimal structure that modifies its interaction with mt-mRNAs.

9.
Cell Tissue Res ; 367(1): 5-20, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27411691

RESUMO

Oxidative phosphorylation (OXPHOS) is the mechanism whereby ATP, the major energy source for the cell, is produced by harnessing cellular respiration in the mitochondrion. This is facilitated by five multi-subunit complexes housed within the inner mitochondrial membrane. These complexes, with the exception of complex II, are of a dual genetic origin, requiring expression from nuclear and mitochondrial genes. Mitochondrially encoded mRNA is translated on the mitochondrial ribosome (mitoribosome) and the recent release of the near atomic resolution structure of the mammalian mitoribosome has highlighted its peculiar features. However, whereas some aspects of mitochondrial translation are understood, much is to be learnt about the presentation of mitochondrial mRNA to the mitoribosome, the biogenesis of the machinery, the exact role of the membrane, the constitution of the translocon/insertion machinery and the regulation of translation in the mitochondrion. This review addresses our current knowledge of mammalian mitochondrial gene expression, highlights key questions and indicates how defects in this process can result in profound mitochondrial disease.


Assuntos
Mamíferos/metabolismo , Proteínas Mitocondriais/biossíntese , Biossíntese de Proteínas , Animais , Humanos , Ribossomos Mitocondriais/metabolismo , Modelos Biológicos
10.
J Inherit Metab Dis ; 40(1): 121-130, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696117

RESUMO

Mitochondrial diseases collectively represent one of the most heterogeneous group of metabolic disorders. Symptoms can manifest at any age, presenting with isolated or multiple-organ involvement. Advances in next-generation sequencing strategies have greatly enhanced the diagnosis of patients with mitochondrial disease, particularly where a mitochondrial aetiology is strongly suspected yet OXPHOS activities in biopsied tissue samples appear normal. We used whole exome sequencing (WES) to identify the molecular basis of an early-onset mitochondrial syndrome-pathogenic biallelic variants in the HTRA2 gene, encoding a mitochondria-localised serine protease-in five subjects from two unrelated families characterised by seizures, neutropenia, hypotonia and cardio-respiratory problems. A unifying feature in all affected children was 3-methylglutaconic aciduria (3-MGA-uria), a common biochemical marker observed in some patients with mitochondrial dysfunction. Although functional studies of HTRA2 subjects' fibroblasts and skeletal muscle homogenates showed severely decreased levels of mutant HTRA2 protein, the structural subunits and complexes of the mitochondrial respiratory chain appeared normal. We did detect a profound defect in OPA1 processing in HTRA2-deficient fibroblasts, suggesting a role for HTRA2 in the regulation of mitochondrial dynamics and OPA1 proteolysis. In addition, investigated subject fibroblasts were more susceptible to apoptotic insults. Our data support recent studies that described important functions for HTRA2 in programmed cell death and confirm that patients with genetically-unresolved 3-MGA-uria should be screened by WES with pathogenic variants in the HTRA2 gene prioritised for further analysis.


Assuntos
Variação Genética/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Erros Inatos do Metabolismo/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Morte Celular/genética , Células Cultivadas , Criança , Exoma/genética , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas Mitocondriais/genética , Músculo Esquelético/metabolismo , Serina Proteases/genética , Síndrome
11.
Nucleic Acids Res ; 44(14): 6868-82, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27353330

RESUMO

LRPPRC is a protein that has attracted interest both for its role in post-transcriptional regulation of mitochondrial gene expression and more recently because numerous mutated variants have been characterized as causing severe infantile mitochondrial neurodegeneration. LRPPRC belongs to the pentatricopeptide repeat (PPR) protein family, originally defined by their RNA binding capacity, and forms a complex with SLIRP that harbours an RNA recognition motif (RRM) domain. We show here that LRPPRC displays a broad and strong RNA binding capacity in vitro in contrast to SLIRP that associates only weakly with RNA. The LRPPRC-SLIRP complex comprises a hetero-dimer via interactions by polar amino acids in the single RRM domain of SLIRP and three neighbouring PPR motifs in the second quarter of LRPPRC, which critically contribute to the LRPPRC-SLIRP binding interface to enhance its stability. Unexpectedly, specific amino acids at this interface are located within the PPRs of LRPPRC at positions predicted to interact with RNA and within the RNP1 motif of SLIRP's RRM domain. Our findings thus unexpectedly establish that despite the prediction that these residues in LRPPRC and SLIRP should bind RNA, they are instead used to facilitate protein-protein interactions, enabling the formation of a stable complex between these two proteins.


Assuntos
Proteínas de Neoplasias/metabolismo , Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/metabolismo , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/genética , Sequência Conservada , Reagentes de Ligações Cruzadas/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Mutação/genética , Proteínas de Neoplasias/química , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/química
12.
Brain ; 138(Pt 12): 3503-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510951

RESUMO

Mitochondrial Complex IV [cytochrome c oxidase (COX)] deficiency is one of the most common respiratory chain defects in humans. The clinical phenotypes associated with COX deficiency include liver disease, cardiomyopathy and Leigh syndrome, a neurodegenerative disorder characterized by bilateral high signal lesions in the brainstem and basal ganglia. COX deficiency can result from mutations affecting many different mitochondrial proteins. The French-Canadian variant of COX-deficient Leigh syndrome is unique to the Saguenay-Lac-Saint-Jean region of Québec and is caused by a founder mutation in the LRPPRC gene. This encodes the leucine-rich pentatricopeptide repeat domain protein (LRPPRC), which is involved in post-transcriptional regulation of mitochondrial gene expression. Here, we present the clinical and molecular characterization of novel, recessive LRPPRC gene mutations, identified using whole exome and candidate gene sequencing. The 10 patients come from seven unrelated families of UK-Caucasian, UK-Pakistani, UK-Indian, Turkish and Iraqi origin. They resemble the French-Canadian Leigh syndrome patients in having intermittent severe lactic acidosis and early-onset neurodevelopmental problems with episodes of deterioration. In addition, many of our patients have had neonatal cardiomyopathy or congenital malformations, most commonly affecting the heart and the brain. All patients who were tested had isolated COX deficiency in skeletal muscle. Functional characterization of patients' fibroblasts and skeletal muscle homogenates showed decreased levels of mutant LRPPRC protein and impaired Complex IV enzyme activity, associated with abnormal COX assembly and reduced steady-state levels of numerous oxidative phosphorylation subunits. We also identified a Complex I assembly defect in skeletal muscle, indicating different roles for LRPPRC in post-transcriptional regulation of mitochondrial mRNAs between tissues. Patient fibroblasts showed decreased steady-state levels of mitochondrial mRNAs, although the length of poly(A) tails of mitochondrial transcripts were unaffected. Our study identifies LRPPRC as an important disease-causing gene in an early-onset, multisystem and neurological mitochondrial disease, which should be considered as a cause of COX deficiency even in patients originating outside of the French-Canadian population.


Assuntos
Deficiência de Citocromo-c Oxidase/genética , Doenças Mitocondriais/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Canadá , Células Cultivadas , Pré-Escolar , Deficiência de Citocromo-c Oxidase/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Proteínas de Repetições Ricas em Leucina , Masculino , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Mutação , Linhagem , Proteínas/metabolismo , RNA Mensageiro/metabolismo , RNA Mitocondrial
13.
Mitochondrion ; 25: 17-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26349026

RESUMO

Mitochondrial DNA mutations are well recognized as an important cause of disease, with over two hundred variants in the protein encoding and mt-tRNA genes associated with human disorders. In contrast, the two genes encoding the mitochondrial rRNAs (mt-rRNAs) have been studied in far less detail. This is because establishing the pathogenicity of mt-rRNA mutations is a major diagnostic challenge. Only two disease causing mutations have been identified at these loci, both mapping to the small subunit (SSU). On the large subunit (LSU), however, the evidence for the presence of pathogenic LSU mt-rRNA changes is particularly sparse. We have previously expanded the list of deleterious SSU mt-rRNA mutations by identifying highly disruptive base changes capable of blocking the activity of the mitoribosomal SSU. To do this, we used a new methodology named heterologous inferential analysis (HIA). The recent arrival of near-atomic-resolution structures of the human mitoribosomal LSU, has enhanced the power of our approach by permitting the analysis of the corresponding sites of mutation within their natural structural context. Here, we have used these tools to determine whether LSU mt-rRNA mutations found in the context of human disease and/or ageing could disrupt the function of the mitoribosomal LSU. Our results clearly show that, much like the for SSU mt-rRNA, LSU mt-rRNAs mutations capable of compromising the function of the mitoribosomal LSU are indeed present in clinical samples. Thus, our work constitutes an important contribution to an emerging view of the mitoribosome as an important element in human health.


Assuntos
Doenças Mitocondriais/genética , Ribossomos Mitocondriais , Mutação , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Biologia Computacional , DNA Mitocondrial/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico
14.
Front Microbiol ; 5: 374, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101074

RESUMO

Protein synthesis is central to life and maintaining a highly accurate and efficient mechanism is essential. What happens when a translating ribosome stalls on a messenger RNA? Many highly intricate processes have been documented in the cytosol of numerous species, but how does organellar protein synthesis resolve this stalling issue? Mammalian mitochondria synthesize just thirteen highly hydrophobic polypeptides. These proteins are all integral components of the machinery that couples oxidative phosphorylation. Consequently, it is essential that stalled mitochondrial ribosomes can be efficiently recycled. To date, there is no evidence to support any particular molecular mechanism to resolve this problem. However, here we discuss the observation that there are four predicted members of the mitochondrial translation release factor family and that only one member, mtRF1a, is necessary to terminate the translation of all thirteen open reading frames in the mitochondrion. Could the other members be involved in the process of recycling stalled mitochondrial ribosomes?

15.
Hum Mol Genet ; 23(23): 6345-55, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25008111

RESUMO

The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexes.


Assuntos
Proteínas Mitocondriais/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , RNA Mensageiro/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Proteínas Mitocondriais/genética , Mutação , Proteínas de Neoplasias/metabolismo , Fosforilação Oxidativa , Polinucleotídeo Adenililtransferase/genética , Cultura Primária de Células , Processamento Pós-Transcricional do RNA , RNA Mitocondrial , Proteínas de Ligação a RNA/metabolismo
16.
EMBO Mol Med ; 6(6): 705-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24838280

RESUMO

Mitochondrial diseases can arise from mutations either in mitochondrial DNA or in nuclear DNA encoding mitochondrially destined proteins. Currently, there is no cure for these diseases although treatments to ameliorate a subset of the symptoms are being developed. In this issue of EMBO Molecular Medicine, Khan et al (2014) use a mouse model to test the efficacy of a simple dietary supplement of nicotinamide riboside to treat and prevent mitochondrial myopathies.


Assuntos
Mitocôndrias/efeitos dos fármacos , Miopatias Mitocondriais/tratamento farmacológico , Niacinamida/análogos & derivados , Complexo Vitamínico B/uso terapêutico , Animais , Masculino , Niacinamida/uso terapêutico , Compostos de Piridínio
17.
Biochim Biophys Acta ; 1842(1): 56-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24161539

RESUMO

Mitochondrial aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein synthesis since they charge tRNAs with their cognate amino acids. Mutations in the genes encoding mitochondrial aaRSs have been associated with a wide spectrum of human mitochondrial diseases. Here we report the identification of pathogenic mutations (a partial genomic deletion and a highly conserved p. Asp325Tyr missense variant) in FARS2, the gene encoding mitochondrial phenylalanyl-tRNA synthetase, in a patient with early-onset epilepsy and isolated complex IV deficiency in muscle. The biochemical defect was expressed in myoblasts but not in fibroblasts and associated with decreased steady state levels of COXI and COXII protein and reduced steady state levels of the mt-tRNA(Phe) transcript. Functional analysis of the recombinant mutant p. Asp325Tyr FARS2 protein showed an inability to bind ATP and consequently undetectable aminoacylation activity using either bacterial tRNA or human mt-tRNA(Phe) as substrates. Lentiviral transduction of cells with wildtype FARS2 restored complex IV protein levels, confirming that the p.Asp325Tyr mutation is pathogenic, causing respiratory chain deficiency and neurological deficits on account of defective aminoacylation of mt-tRNA(Phe).


Assuntos
Aminoacil-tRNA Sintetases/genética , Deficiência de Citocromo-c Oxidase/genética , Epilepsia/genética , Mitocôndrias/genética , Mutação , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Pré-Escolar , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Deficiência de Citocromo-c Oxidase/complicações , Deficiência de Citocromo-c Oxidase/enzimologia , Deficiência de Citocromo-c Oxidase/patologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Epilepsia/complicações , Epilepsia/enzimologia , Epilepsia/patologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Mioblastos/metabolismo , Mioblastos/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
18.
Hum Mol Genet ; 23(4): 949-67, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24092330

RESUMO

Mutations of mitochondrial DNA are linked to many human diseases. Despite the identification of a large number of variants in the mitochondrially encoded rRNA (mt-rRNA) genes, the evidence supporting their pathogenicity is, at best, circumstantial. Establishing the pathogenicity of these variations is of major diagnostic importance. Here, we aim to estimate the disruptive effect of mt-rRNA variations on the function of the mitochondrial ribosome. In the absence of direct biochemical methods to study the effect of mt-rRNA variations, we relied on the universal conservation of the rRNA fold to infer their disruptive potential. Our method, named heterologous inferential analysis or HIA, combines conservational information with functional and structural data obtained from heterologous ribosomal sources. Thus, HIA's predictive power is superior to the traditional reliance on simple conservation indexes. By using HIA, we have been able to evaluate the disruptive potential for a subset of uncharacterized 12S mt-rRNA variations. Our analysis revealed the existence of variations in the rRNA component of the human mitoribosome with different degrees of disruptive power. In cases where sufficient information regarding the genetic and pathological manifestation of the mitochondrial phenotype is available, HIA data can be used to predict the pathogenicity of mt-rRNA mutations. In other cases, HIA analysis will allow the prioritization of variants for additional investigation. Eventually, HIA-inspired analysis of potentially pathogenic mt-rRNA variations, in the context of a scoring system specifically designed for these variants, could lead to a powerful diagnostic tool.


Assuntos
RNA Ribossômico/genética , RNA/genética , Simulação por Computador , Sequência Conservada , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , Modelos Moleculares , Mutação , Neoplasias/genética , Conformação de Ácido Nucleico , RNA/química , RNA Mitocondrial , RNA Ribossômico/química
19.
PLoS One ; 8(5): e64670, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741365

RESUMO

The Escherichia coli oligoribonuclease, ORN, has a 3' to 5' exonuclease activity specific for small oligomers that is essential for cell viability. The human homologue, REXO2, has hitherto been incompletely characterized, with only its in vitro ability to degrade small single-stranded RNA and DNA fragments documented. Here we show that the human enzyme has clear dual cellular localization being present both in cytosolic and mitochondrial fractions. Interestingly, the mitochondrial form localizes to both the intermembrane space and the matrix. Depletion of REXO2 by RNA interference causes a strong morphological phenotype in human cells, which show a disorganized network of punctate and granular mitochondria. Lack of REXO2 protein also causes a substantial decrease of mitochondrial nucleic acid content and impaired de novo mitochondrial protein synthesis. Our data constitute the first in vivo evidence for an oligoribonuclease activity in human mitochondria.


Assuntos
Proteínas 14-3-3/genética , Biomarcadores Tumorais/genética , Exorribonucleases/genética , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/genética , Proteínas 14-3-3/antagonistas & inibidores , Proteínas 14-3-3/metabolismo , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/metabolismo , Células HeLa , Humanos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Ácidos Nucleicos/química , Biossíntese de Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
20.
RNA Biol ; 10(9): 1433-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23635806

RESUMO

Pentatricopeptide repeat (PPR) proteins constitute a large family of RNA-binding proteins that contain a canonical 35 residue repeat motif. Originally identified in Arabidopsis thaliana, family members are found in protists, fungi, and metazoan but are by far most abundant in plant organelles. Seven examples have been identified in human mitochondria and roles have been tentatively ascribed to each. In this review, we briefly outline each of these PPR proteins and discuss the role each is believed to play in facilitating mitochondrial gene expression.


Assuntos
Mitocôndrias/genética , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética , Ribonuclease P/genética , Ribonuclease P/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...