Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 19(2): 551-569, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35670302

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is closely related to various cellular aspects associated with autophagy. However, how SARS-CoV-2 mediates the subversion of the macroautophagy/autophagy pathway remains largely unclear. In this study, we demonstrate that overexpression of the SARS-CoV-2 ORF7a protein activates LC3-II and leads to the accumulation of autophagosomes in multiple cell lines, while knockdown of the viral ORF7a gene via shRNAs targeting ORF7a sgRNA during SARS-CoV-2 infection decreased autophagy levels. Mechanistically, the ORF7a protein initiates autophagy via the AKT-MTOR-ULK1-mediated pathway, but ORF7a limits the progression of autophagic flux by activating CASP3 (caspase 3) to cleave the SNAP29 protein at aspartic acid residue 30 (D30), ultimately impairing complete autophagy. Importantly, SARS-CoV-2 infection-induced accumulated autophagosomes promote progeny virus production, whereby ORF7a downregulates SNAP29, ultimately resulting in failure of autophagosome fusion with lysosomes to promote viral replication. Taken together, our study reveals a mechanism by which SARS-CoV-2 utilizes the autophagic machinery to facilitate its own propagation via ORF7a.Abbreviations: 3-MA: 3-methyladenine; ACE2: angiotensin converting enzyme 2; ACTB/ß-actin: actin beta; ATG7: autophagy related 7; Baf A1: bafilomycin A1; BECN1: beclin 1; CASP3: caspase 3; COVID-19: coronavirus disease 2019; GFP: green fluorescent protein; hpi: hour post-infection; hpt: hour post-transfection; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MERS: Middle East respiratory syndrome; MTOR: mechanistic target of rapamycin kinase; ORF: open reading frame; PARP: poly(ADP-ribose) polymerase; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; shRNAs: short hairpin RNAs; siRNA: small interfering RNA; SNAP29: synaptosome associated protein 29; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TCID50: tissue culture infectious dose; TEM: transmission electron microscopy; TUBB, tubulin, beta; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Autofagia , COVID-19 , Humanos , Autofagossomos/metabolismo , Autofagia/genética , Caspase 3/metabolismo , Lisossomos/metabolismo , Macroautofagia , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE , SARS-CoV-2 , Serina-Treonina Quinases TOR/metabolismo , Replicação Viral
2.
Hepatology ; 74(1): 379-396, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33125780

RESUMO

BACKGROUND AND AIMS: Increasing evidence in recent years has suggested that microRNA-7 (miR-7) is an important gene implicated in the development of various diseases including HCC. However, the role of miR-7 in autoimmune hepatitis (AIH) is unknown. APPROACH AND RESULTS: Herein, we showed that miR-7 deficiency led to exacerbated pathology in Concanavalin-A-induced murine acute autoimmune liver injury (ALI) model, accompanied by hyperactivation state of CD4+ T cells. Depletion of CD4+ T cells reduced the effect of miR-7 deficiency on the pathology of ALI. Interestingly, miR-7 deficiency elevated CD4+ T-cell activation, proliferation, and cytokine production in vitro. Adoptive cell transfer experiments showed that miR-7def CD4+ T cells could exacerbate the pathology of ALI. Further analysis showed that miR-7 expression was up-regulated in activated CD4+ T cells. Importantly, the transcription of pre-miR-7b, a major resource of mature miR-7 in CD4+ T cells, was dominantly dependent on transcription factor CCAAT enhancer binding protein alpha (C/EBPα), which binds to the core promoter region of the miR-7b gene. Global gene analysis showed that mitogen-activated protein kinase 4 (MAPK4) is a target of miR-7 in CD4+ T cells. Finally, the loss of MAPK4 could ameliorate the activation state of CD4+ T cells with or without miR-7 deficiency. Our studies document the important role of miR-7 in the setting of AIH induced by Concanavalin-A. Specifically, we provide evidence that the C/EBPα/miR-7 axis negatively controls CD4+ T-cell activation and function through MAPK4, thereby orchestrating experimental AIH in mice. CONCLUSIONS: This study expands on the important role of miR-7 in liver-related diseases and reveals the value of the C/EBPα/miR-7 axis in CD4+ T-cell biological function for the pathogenesis of immune-mediated liver diseases.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linfócitos T CD4-Positivos/imunologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Hepatite Autoimune/genética , MicroRNAs/genética , RNA Helicases/genética , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/transplante , Concanavalina A/administração & dosagem , Concanavalina A/imunologia , Modelos Animais de Doenças , Hepatite Autoimune/imunologia , Hepatite Autoimune/patologia , Humanos , Fígado/imunologia , Fígado/patologia , Ativação Linfocitária/genética , Camundongos , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Regulação para Cima
3.
Cancer Cell Int ; 18: 101, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008618

RESUMO

MicroRNAs (miRNAs), which are endogenous about 20-23 nucleotides non-coding RNAs, have been acted as post-transcriptional regulators of gene expression. Current studies demonstrated that miRNAs are promising candidates for tumor gene therapy because of their important biological functions in tumor cell proliferation, metastasis, apoptosis, and drug resistance. As an important delivery system, nanostructured lipid carriers (NLCs) have great potential in tumor gene therapy, particularly for miRNA delivery, due to low toxicity, low immunogenicity, long metabolic cycles, and easy modification. This article reviews recent research progress on NLCs for miRNA delivery in tumor gene therapy and prospective applications.

4.
Int Arch Allergy Immunol ; 177(3): 207-218, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30048989

RESUMO

BACKGROUND: MicroRNA-126 (miR-126), a distinct miRNA family member, has been reported to be involved in the development and function of some types of immune cells. However, the potential role of miR-126 in the development of CD4+ T cells remains to be elucidated. OBJECTIVES: To investigate the potential role of miR-126 in the development of CD4+ T cells in the thymus and explore its significance. METHODS: The relative expression level of miR-126 in thymus CD4+ single-positive (SP) cells was detected by Real-Time PCR assay. The possible change in thymus tissue was assessed by histopathology. The total cell number of thymocytes and the expression of activation-associated molecules including CD62L, CD69, and CD44, as well as proliferation-associated nuclear antigen Ki-67, in CD4+ SP cells were assessed by flow cytometric analysis. The expression of IRS-1 and related signaling pathways including Akt and Erk were determined by flow cytometric analysis. RESULTS: Compared with that in wild-type (WT) mice, the total cell number of thymocytes in miR-126 knockdown (KD) mice increased significantly. Moreover, the proportion and absolute cell number of thymic CD4+ SP cells decreased significantly in miR-126 KD mice. Further analysis showed that the frequencies of activation-associated molecules including CD62L, CD69, and CD44, as well as proliferation-associated nuclear antigen Ki-67 in CD4+ SP cells also changed significantly, respectively. Mechanism aspect, the expression level of IRS-1, a putative target of miR-126, increased significantly in CD4+ SP cells in miR-126 KD mice. Moreover, the expression levels of the signaling molecules phosphorylated (p)-Akt and p-Erk also changed significantly. CONCLUSIONS: Our work is the first to reveal a previously unknown role of miR-126 in the development of CD4+ SP cells in the thymus, which might ultimately benefit studies on development of thymocytes.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/genética , Ativação Linfocitária/genética , MicroRNAs/genética , Animais , Antígenos CD/biossíntese , Antígenos de Diferenciação de Linfócitos T/biossíntese , Diferenciação Celular/imunologia , Citometria de Fluxo , Receptores de Hialuronatos/biossíntese , Proteínas Substratos do Receptor de Insulina/metabolismo , Antígeno Ki-67/biossíntese , Selectina L/biossíntese , Lectinas Tipo C/biossíntese , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Timócitos/citologia , Timócitos/imunologia , Timo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...