Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134420, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691997

RESUMO

In this work, MIL-88A(Fe) was immobilized onto the expanded perlites to fabricate the floating MIL-88A(Fe)@expanded perlites (M@EP) catalyst via high throughput batch synthesis method under room temperature. The as-prepared M@EP could efficiently activate H2O2 to achieve 100% tetracycline antibiotics (TCs) removal under both artificial low power UV light (UVL) and real sunlight (SL) irradiation. The toxicological evaluation, growth experiment of mung beans and antimicrobial estimation revealed the decreasing aquatic toxicity of the TCs intermediates compared to those of the pristine TCs. A self-designed continuous bed reactor was employed to investigate the long-term operation of the M@EP. The findings demonstrated that the antibiotics mixture can be continuously degraded up to 7 days under UVL and 5 daytimes under SL irradiation, respectively. More importantly, ca. 76.9% and 81.6% of total organic carbon (TOC) removal efficiencies were accomplished in continuous bed reactor under UVL and SL irradiation, respectively. This work advances the immobilized MOFs on floating supports for their practical application in large-scale wastewater purification through advanced oxidation processes. ENVIRONMENTAL IMPLICATION: This work presented the high throughput production and photo-Fenton degradation application of floating MIL-88A(Fe)@expanded perlites (M@EP). Three tetracycline antibiotics (TCs) were selected as model pollutants to test the degradation ability of M@EP in batch experiment and continuous operation under artificial light and solar light. The complete TCs degradation could be accomplished in self-designed device up to 7 d under UV light and 5 d under real solar light. This work tapped a new door to push MOFs-based functional materials in the real water purification.

2.
J Orthop Sci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565448

RESUMO

BACKGROUND: This study aimed to determine risk factors for poor in-hospital outcomes in a large cohort of older adult patients with acute non-traffic traumatic spinal cord injury (tSCI). METHODS: This is a population-based, retrospective, observational study. Data of older adults ≥65 years with a primary discharge diagnosis of acute non-traffic tSCI were extracted from the US National Inpatient Sample (NIS) database 2005-2018. Traffic-related tSCI admissions or patients lacking complete data on age, sex and outcomes of interest were excluded. Univariate and multivariate logistic regression analysis was used to determine associations between variables and in-hospital outcomes. RESULTS: Data of 49,449 older patients (representing 246,939 persons in the US) were analyzed. The mean age was 79.9 years. Multivariable analyses revealed that severe International Classification of Disease (ICD)-based injury severity score (ICISS) (adjusted odds ratio [aOR] = 3.14, 95% confidence interval [CI]: 2.77-3.57), quadriplegia (aOR = 2.79, 95%CI: 2.34-3.32), paraplegia (aOR = 2.60, 95%CI:1.89-3.58), cervical injury with vertebral fracture (aOR = 2.19, 95%CI: 1.90-2.52), and severe liver disease (aOR = 2.33, 95%CI: 1.34-4.04) were all strong independent predictors of in-hospital mortality. In addition, malnutrition (aOR = 3.19, 95% CI: 2.93-3.48) was the strongest predictors of prolonged length of stay (LOS). CONCLUSIONS: Several critical factors for in-hospital mortality, unfavorable discharge, and prolonged LOS among US older adults with acute non-traffic tSCI were identified. In addition to the factors associated with initial severity, the presence of severe liver disease and malnutrition emerged as strong predictors of unfavorable outcomes, highlighting the need for special attention for these patient subgroups.

3.
Angew Chem Int Ed Engl ; 63(24): e202403203, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38590293

RESUMO

Nanozymes have demonstrated significant potential in combating malignant tumor proliferation through catalytic therapy. However, the therapeutic effect is often limited by insufficient catalytic performance. In this study, we propose the utilization of strain engineering in metallenes to fully expose the active regions due to their ultrathin nature. Here, we present the first report on a novel tensile strain-mediated local amorphous RhRu (la-RhRu) bimetallene with exceptional intrinsic photothermal effect and photo-enhanced multiple enzyme-like activities. Through geometric phase analysis, electron diffraction profile, and X-ray diffraction, it is revealed that crystalline-amorphous heterophase boundaries can generate approximately 2 % tensile strain in the bimetallene. The ultrathin structure and in-plane strain of the bimetallene induce an amplified strain effect. Both experimental and theoretical evidence support the notion that tensile strain promotes multiple enzyme-like activities. Functioning as a tumor microenvironment (TME)-responsive nanozyme, la-RhRu exhibits remarkable therapeutic efficacy both in vitro and in vivo. This work highlights the tremendous potential of atomic-scale tensile strain engineering strategy in enhancing tumor catalytic therapy.


Assuntos
Terapia Fototérmica , Humanos , Catálise , Animais , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Resistência à Tração , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos
4.
Neurologist ; 29(2): 82-90, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839086

RESUMO

OBJECTIVES: Spinal cord injury (SCI) is any spinal cord injury or affliction that results in temporary or permanent impairment of motor or sensory function. This study determined the prevalence of frailty and its impact on in-hospital outcomes of patients admitted with acute traumatic SCI (TSCI). METHODS: This retrospective study extracted data of adults 18 to 85 years with acute TSCI from the US Nationwide Inpatient Sample (NIS) 2016 to 2018. Frailty status were assessed by the 11-factor modified Frailty Index (mFI-11) through claim codes. Patients with an mFI ≥3 were classified as frail. Associations between study variables and in-hospital mortality, discharge status, prolonged length of stay, severe infection, and hospital costs were determined by univariate and multivariable regression analyses. RESULTS: A total of 52,263 TSCI patients were identified, where 12,203 (23.3%) patients were frail. After adjusting for relevant confounders, frailty was independently associated with increased risk for in-hospital mortality [adjusted odds ratio (aOR) = 1.25, 95% CI:1.04-1.49], unfavorable discharge (aOR =1.15, 95% CI: 1.09-1.22), prolonged length of stay (aOR =1.32, 95% CI: 1.24-1.40), and severe infection (aOR =2.52, 95% CI: 2.24-2.83), but not hospital cost. Stratified analyses revealed frailty was associated with higher unfavorable discharge and severe infection regardless of age, Charlson Comorbidity Index, and injury level. CONCLUSIONS: In acute TSCI, frailty is independently associated with increased risk for adverse inpatient outcomes in terms of in-hospital mortality, prolonged hospital stays, unfavorable discharge, and particularly severe infection.


Assuntos
Fragilidade , Traumatismos da Medula Espinal , Adulto , Humanos , Fragilidade/epidemiologia , Fragilidade/complicações , Estudos Retrospectivos , Pacientes Internados , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/epidemiologia , Hospitalização , Tempo de Internação , Complicações Pós-Operatórias/etiologia , Fatores de Risco
5.
Proc Natl Acad Sci U S A ; 120(45): e2309032120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903267

RESUMO

Tryptophan and its derivatives perform a variety of biological functions; however, the role and specific mechanism of many tryptophan derivatives in intestinal inflammation remain largely unclear. Here, we identified that an Escherichia coli strain (Ec-TMU) isolated from the feces of tinidazole-treated individuals, and indole-3-lactic acid (ILA) in its supernatant, decreased the susceptibility of mice to dextran sulfate sodium-induced colitis. Ec-TMU and ILA contribute to the relief of colitis by inhibiting the production of epithelial CCL2/7, thereby reducing the accumulation of inflammatory macrophages in vitro and in vivo. Mechanistically, ILA downregulates glycolysis, NF-κB, and HIF signaling pathways via the aryl hydrocarbon receptor, resulting in decreased CCL2/7 production in epithelial cells. Clinical evidence suggests that the fecal ILA level is negatively correlated with the progression indicator of inflammatory bowel diseases. These results demonstrate that ILA has the potential to regulate intestinal homeostasis by modulating epithelium-macrophage interactions.


Assuntos
Colite , Triptofano , Animais , Camundongos , Triptofano/metabolismo , Colite/metabolismo , Macrófagos/metabolismo , Epitélio/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Mucosa Intestinal/metabolismo
6.
PeerJ ; 11: e15654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520246

RESUMO

Background: Killer cell lectin-like receptor B1 (KLRB1) is an important member of the natural killer cell gene family. This study explored the potential value of KLRB1 as a breast cancer (BC) biomarker and its close association with the tumor immune microenvironment during the development of BC. Methods: We examined the differential expression of KLRB1 in pan-cancer. Clinical and RNA-Seq data from BC samples were evaluated in The Cancer Genome Atlas (TCGA) and validated in Gene Expression Omnibus (GEO) datasets and by immunohistochemistry (IHC) staining. The relationship between KLRB1 and clinical parameters was explored through Chi-square tests. The diagnostic value of KLRB1 was evaluated using a receiver operating characteristic (ROC) curve. Survival analysis was tested by Kaplan-Meier curves to demonstrate the relationship between KLRB1 and survival. Univariable and multivariate cox regression analyses were carried out as well. The analysis of immune infiltration level and gene set enrichment analysis (GSEA) were conducted to examine KLRB1's mechanism during the progression of BC. We used the Tumor Immune Estimation Resource (TIMER), the Cancer Single-cell Expression Map (CancerSCEM) database, the Tumor Immune Single-cell Hub (TISCH) database, and the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) method to explore KLRB1's association with immune infiltration level and different quantitative distribution of immune cells. The relevant signaling pathways in BC associated with KLRB1 were identified using GSEA. Results: The expression of KLRB1 was downregulated across the majority of cancers including BC. The lower KLRB1 expression group exhibited shorter relapse free survival (RFS) and overall survival (OS). IHC staining showed that KLRB1 staining was weaker in breast tumor tissues than in paratumors. Additionally, GSEA identified several pathway items distinctly enriched in BC. KLRB1 expression level was also positively related to the infiltrating number of immune cells in BC. Moreover, the CancerSCEM and TISCH databases as well as the CIBERSORT method demonstrated the close relationship between KLRB1 and immune cells, particularly macrophages. Conclusion: Low KLRB1 expression was considered an independent prognostic biomarker and played an important role in the tumor immune microenvironment of BC patients.

7.
Front Immunol ; 14: 1155182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275857

RESUMO

Background: Solute carrier family 35 member A2 (SLC35A2), which belongs to the SLC35 solute carrier family of human nucleoside sugar transporters, has shown regulatory roles in various tumors and neoplasms. However, the function of SLC35A2 across human cancers remains to be systematically assessed. Insights into the prediction ability of SLC35A2 in clinical practice and immunotherapy response remains limited. Materials and methods: We obtained the gene expression and protein levels of SLC35A2 in a variety of tumors from Molecular Taxonomy of Breast Cancer International Consortium, The Cancer Genome Atlas, Gene Expression Omnibus, Chinese Glioma Genome Atlas, and Human Protein Atlas databases. The SLC35A2 level was validated by immunohistochemistry. The predictive value for prognosis was evaluated by Kaplan-Meier survival and Cox regression analyses. Correlations between SLC35A2 expression and DNA methylation, genetic alterations, tumor mutation burden (TMB), microsatellite instability (MSI), and tumor microenvironment were performed using Spearman's correlation analysis. The possible downstream pathways of SLC35A2 in different human cancers were explored using gene set variation analysis. The potential role of SLC35A2 in the tumor immune microenvironment was evaluated via EPIC, CIBERSORT, MCP-counter, CIBERSORT-ABS, quanTIseq, TIMER, and xCell algorithms. The difference in the immunotherapeutic response of SLC35A2 under different expression conditions was evaluated by the tumor immune dysfunction and exclusion (TIDE) score as well as four independent immunotherapy cohorts, which includes patients with bladder urothelial carcinoma (BLCA, N = 299), non-small cell lung cancer (NSCLC, N = 72 and N = 36) and skin cutaneous melanoma (SKCM, N = 25). Potential drugs were identified using the CellMiner database and molecular docking. Results: SLC35A2 exhibited abnormally high or low expression in 23 cancers and was significantly associated with the prognosis. In various cancers, SLC35A2 expression and mammalian target of rapamycin complex 1 signaling were positively correlated. Multiple algorithmic immune infiltration analyses suggested an inverse relation between SLC35A2 expression and infiltrating immune cells, which includes CD4+T cells, CD8+T cells, B cells, and natural killer cells (NK) in various tumors. Furthermore, SLC35A2 expression was significantly correlated with pan-cancer immune checkpoints, TMB, MSI, and TIDE genes. SLC35A2 showed significant predictive value for the immunotherapy response of patients with diverse cancers. Two drugs, vismodegib and abiraterone, were identified, and the free binding energy of cytochrome P17 with abiraterone was higher than that of SLC35A2 with abiraterone. Conclusion: Our study revealed that SLC35A2 is upregulated in 20 types of cancer, including lung adenocarcinoma (LUAD), breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), and lung squamous cell carcinoma (LUSC). The upregulated SLC35A2 in five cancer types indicates a poor prognosis. Furthermore, there was a positive correlation between the overexpression of SLC35A2 and reduced lymphocyte infiltration in 13 cancer types, including BRCA and COAD. Based on data from several clinical trials, patients with LUAD, LUSC, SKCM, and BLCA who exhibited high SLC35A2 expression may experience improved immunotherapy response. Therefore, SLC35A2 could be considered a potential predictive biomarker for the prognosis and immunotherapy efficacy of various tumors. Our study provides a theoretical basis for further investigating its prognostic and therapeutic potentials.


Assuntos
Biomarcadores Tumorais , Proteínas de Transporte de Monossacarídeos , Neoplasias , Humanos , Expressão Gênica , Imunoterapia , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Prognóstico , Linfócitos T/imunologia , Resultado do Tratamento , Microambiente Tumoral , Regulação para Cima , Biomarcadores Tumorais/genética
8.
RSC Adv ; 13(9): 6108-6123, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36814871

RESUMO

Biomass-activated carbon has made a great contribution as an adsorbent in the field of dye wastewater treatment. In this study, the response surface method (RSM) based on the Box-Behnken design was used to optimize the preparation process. Bamboo fiber activated carbon (BAC) with a specific surface area of 2892 m2 g-1 and a pore volume of 1.80 cm3 g-1 was prepared. Various characterization methods (SEM, XPS, XRD, and Raman spectroscopy) were used to analyze the micro-structure of BAC. In the microscopic state, the BAC is fibrous and maintains the originally connected pores of the bamboo fiber. After high-temperature activation, the microcrystallinity of BAC decreases, and the degree of graphitization is low, indicating the presence of amorphous carbon. The adsorption capacity of BAC to crystal violet in simulated wastewater was evaluated via an adsorption experiment. Under the following conditions: the dosage of BAC was 0.04 g, the concentration was 600 mg L-1, the adsorption temperature and time were 25 °C and 30 min, respectively, and the as-prepared BAC had a 99.96% removal rate. The adsorption process conformed to the pseudo-second-order kinetic model and Langmuir adsorption isotherm model, indicating that the adsorption process of CV on BAC belonged to monomolecular layer adsorption. The adsorption process occurs spontaneously and is accompanied by heat release, and the maximum adsorption capacity of BAC within a given concentration range could reach 1353.09 mg g-1. SEM-EDS characterization before and after adsorption showed that ion exchange and the presence of oxygen-containing functional groups played an important role in promoting the adsorption process. The results show that BAC considerably affects CV removal, which has great application prospects.

9.
Anal Chem ; 95(5): 2949-2957, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36695319

RESUMO

Fluorescence imaging-guided diagnostics is one of the most promising approaches for facile detection of tumors in situ owing to its simple operation and non-invasiveness. As a crucial biomarker for primary ovarian cancers, ß-galactosidase (ß-gal) has been demonstrated to be the significant molecular target for visualization of ovarian tumors. Herein, a membrane-permeable fluorescent chemosensor (namely, LAN-ßgal) was synthesized for ß-gal-specific detection using the d-galactose residue as a specific recognition unit and LAN-OH (ΦF = 0.47) as a fluorophore. After ß-gal was digested, the fluorescence of the initially quenched LAN-ßgal (ΦF < 0.001) was enhanced by up to more than 2000-fold, which exceeded the fluorescence enhancement of other previously reported probes. We also demonstrated that the chemosensor LAN-ßgal could visualize endogenous ß-gal and distinguish ovarian cancer cells from normal ovarian cells. Further, the chemosensor LAN-ßgal was successfully applied to visualize the back tumor-bearing mouse model and peritoneal metastatic ovarian cancer model in vivo. More importantly, through in situ spraying, the proposed chemosensor was successfully employed to assist in the surgical resection of ovarian cancer tumors due to its high tumor-to-normal (T/N) tissue fluorescence ratio of 218. To the best of our knowledge, this is the highest T/N tissue fluorescence ratio ever reported. We believe that the LAN-ßgal chemosensor can be utilized as a new tool for the clinical diagnosis and treatment of ovarian cancer.


Assuntos
Corantes Fluorescentes , Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Corantes Fluorescentes/química , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/cirurgia , Microscopia de Fluorescência , Biomarcadores , Modelos Animais de Doenças , beta-Galactosidase/química
10.
Biomol Biomed ; 23(3): 405-425, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36321611

RESUMO

Immune cell infiltration occurs in the tumor microenvironment (TME) and influences cancer progression through interaction with tumor cells. Runt-related transcription factors (RUNXs), RUNX1-3, are the master regulators of development and differentiation and are all important to the development of immune cells. However, the role of RUNXs in the immune cells of TME remains unclear. In this study, we first used online related databases and related LGG data from TCGA and CGGA to conduct bioinformatics analysis, which confirmed that RUNXs were significantly and positively correlated with immune infiltration in multiple tumors, especially in low-grade glioma (LGG) and there was the highest correlation between RUNXs and the progress and prognosis of LGG. Furthermore, the functional enrichment analysis revealed that RUNXs might be involved in the inflammatory and immune responses of the biological processes, and RUNXs were tightly associated with the multiple immune checkpoint molecules. Subsequent results confirmed that RUNX1, as an independent prognostic factor for LGG, may target interferon-gamma receptor 2 (IFNGR2) to regulate glioma cell proliferation, invasion, and migration. Besides, we also found that the expression levels of RUNX1 and IFNGR2 were significantly reduced, and their correlation was enhanced in the IDH-mutant subtype. Patients with a high expression of RUNX1 and/or IFNGR2 (HH/H) in the IDH-mutant subtype showed poorer prognosis and significantly increased infiltration of M2 macrophages. This finding implied the possible key role of RUNX1 in the differentiation of IDH mutant subtypes as well as in the formation of tumor microenvironment (TME) infiltration signatures by monitoring IFNGR2.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Glioma , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Prognóstico , Diferenciação Celular/genética , Glioma/genética , Biomarcadores , Microambiente Tumoral/genética , Receptores de Interferon
11.
Nano Lett ; 22(20): 8321-8330, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36222477

RESUMO

Ti3C2-MXene-based composites provide multifunctional interfaces in diagnosis and treatment of tumors. Herein, we proposed a multifunctional nanoplatform based on Ti3C2-MXene-Au nanocomposites, which combines photothermal properties and peroxidase-like activity, accomplishing synergistic photothermal therapy (PTT) and enzyme dynamic therapy (EDT) accompanied by photoacoustic (PA) and thermal dual-mode imaging in vivo. Furthermore, PTT induces immunogenic cell death, and EDT promotes cell apoptosis, facilitating dendritic cell (DC) maturation and T cell infiltration into the tumor. On this basis, the antibody OX40 (αOX40) was utilized to further contribute immune therapy for reversing the immunosuppressive tumor microenvironment by activating CD4+ and CD8+ T cells. In summary, a triune of PTT/EDT/antitumor immune therapy is achieved by combining Ti3C2-MXene-Au nanocomposites and αOX40, which possesses several strong features of good biocompatibility, NIR-controlled targeting, significant cancer cell killing, and satisfactory biosafety in vitro and in vivo. Our work might highlight the promising application of MXene-based nanoplatforms for cancer therapy.


Assuntos
Nanocompostos , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Titânio/uso terapêutico , Linfócitos T CD8-Positivos , Nanocompostos/uso terapêutico , Peroxidases , Fototerapia , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121615, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841857

RESUMO

Alkaline phosphatase (ALP) is a type of enzyme that widely exists in various tissues of the human body; it plays an important role in regulating many cell functions. The development of a sensitive and accurate tool to detect the changes of ALP activity in organisms can contribute to research in the fields of biochemistry, cytology, clinical medicine, etc. In this paper, a small organic molecule-based ratiometric fluorescent probe (FCP) was designed based on the hydroxyl electron-donating group in fluorescein-coumarin protected by the phosphate group. ALP can trigger the fluorescence change through the enzyme-catalyzed cleavage of phosphoryl ester groups, and the ratio of ALP can be measured at wavelengths of 465 nm and 530 nm. The probe had high selectivity and sensitivity to ALP, and the detection limit measured under the optimal conditions in an aqueous medium reached 0.006 mU/mL. The ALP activity of human serum samples was determined using the probe and found to be in good agreement with that measured using commercial ALP kits. Finally, the probe was also successfully applied to image ALP in living hepatocytes with good selectivity and sensitivity.


Assuntos
Fosfatase Alcalina , Corantes Fluorescentes , Cumarínicos , Fluoresceína , Corantes Fluorescentes/química , Humanos , Limite de Detecção , Espectrometria de Fluorescência/métodos
13.
Biosens Bioelectron ; 212: 114389, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35635973

RESUMO

Matrix metalloproteinase 2 (MMP-2) is a crucial biomarker of tumor growth, invasion and metastasis. In the present study, a core-satellite magnetic-fluorescent-plasmonic nanosensor (FMNS@Au) was constructed through biological self-assembly to generate localized SERS "hot spots" and an efficient FRET system for the sensitive determination of MMP-2 activity in a SERS-fluorescence dual-mode assay. In this hybrid nanosensor, a biotin-labeled peptide containing a specific MMP-2 substrate (PLGVR) was employed as a bridge for the assembly of gold nanoparticles (AuNPs) and avidin functionalized fluorescent-magnetic nanospheres (FMNS). The modified RB on FMNS served as a Raman reporter and a donor of FRET, while the AuNPs assembled on FMNS acted as SERS substrates and acceptors of FRET. In the presence of MMP-2, the SERS "hot spot" effect was weakened and the FRET system was disrupted through enzymatic cleavage of PLGVR, resulting in a reduction of SERS signal and the recovery of fluorescence emission. Importantly, this combination of SERS and fluorescence assay methods in the dual-mode nanosensor broadened the detection range for MMP-2 to 1-200 ng mL-1, with a limit of detection of 0.35 ng mL-1 and a limit of quantitation of 1.17 ng mL-1. In addition, our novel nanosensor affords semi-quantitative sensing of MMP-2 by naked-eye observation and accurate detection of MMP-2 through dual-mode analysis. The practicality of FMNS@Au was validated by determination of MMP-2 activity in cell secretions and human serum samples. The designed FMNS@Au nanosensor holds great potential for clinical diagnosis of protease-related diseases.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Ouro , Humanos , Limite de Detecção , Metaloproteinase 2 da Matriz , Análise Espectral Raman/métodos
14.
Se Pu ; 40(5): 409-422, 2022 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-35478000

RESUMO

To ensure the success of large-scale sporting events, prevent the contamination of food by prohibited substances, and evaluate the risk of foodborne stimulants and other hormones in food, it is necessary to establish a high-throughput, rapid, and accurate detection method for foodborne stimulants and other hormones. In this study, a QuEChERS method is proposed for the simultaneous determination of 44 foodborne stimulants and 6 progestogens using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The analyzed foodborne stimulants include 19 ß2-agonists, 3 ß-blockers, 11 anabolic agents, 8 glucocorticoids, and 3 diuretics. A meat sample was crushed and homogenized, following which the internal standard was added. Subsequently, the sample was shaken and extracted with water and an acetonitrile solution containing 0.5% acetic acid, then dehydrated and centrifuged with sodium chloride and anhydrous magnesium sulfate. The supernatant was purified by PSA, C18, neutral alumina, and anhydrous magnesium sulfate. It was then dried with nitrogen and concentrated. The concentrated extracts were separated using an ACQUITY BEH C18 column (100 mm×2.1 mm, 1.7 µm) with gradient elution using 0.1% formic acid-5 mmol/L ammonium acetate solution and methanol as mobile phases. The target compounds were detected by ultra-performance liquid chromatography-tandem mass spectrometry with electrospray ionization and positive ion scanning (ESI+) in the multiple reaction monitoring (MRM) mode, and quantified by the internal standard method. The linear ranges of ß2-agonists and ß-blockers were 0.1-20 µg/L, the linear ranges of glucocorticoids were 0.5-200 µg/L, and those of the others were approximately 0.2-50 µg/L. The linear relationships of 50 compounds were good, with correlation coefficients >0.99 in the linear ranges, and limits of quantification (LOQs) in the range of 0.1-0.4 µg/kg. The recoveries of the 50 target compounds spiked in chicken, pork, beef, lamb samples at three levels ranged from 50.3% to 119.9%, while the relative standard deviations (RSDs, n=6) ranged from 0.42% to 15.1%. Nine meat samples (including 3 beef, 3 pork, 2 chicken, and duck samples) were tested by this method and the national standard method (GB/T 21981-2008). The t test was used for statistical analysis of the hydrocortisone and cortisone contents, and no significant difference was found between the results obtained by the two methods. The developed method was used to analyze 12 beef samples from a farm. In all, 4 compounds were detected, while the other 46 were not detected. The content ranges and detection rates of the compounds were as follows: hydrocortisone: 3.3-22.6 µg/kg, 100%; cortisone: 1.5-2.1 µg/kg, 67%; androstenedione: 0.7-1.2 µg/kg, 17%; and testosterone: 0.6-1.5 µg/kg, 42%. In conclusion, the proposed method is simple, accurate, and sensitive, and hence, is suitable for the detection of foodborne stimulants and progestogens in different kinds of raw meat.


Assuntos
Cortisona , Carne Vermelha , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Glucocorticoides , Hidrocortisona , Sulfato de Magnésio , Progestinas , Carne Vermelha/análise , Ovinos , Espectrometria de Massas em Tandem
15.
Dig Liver Dis ; 54(2): 228-236, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34016546

RESUMO

BACKGROUND: Primary biliary cholangitis (PBC) is a complex disease with high heritability. We investigated the association between human leukocyte antigen (HLA)-DRB1 alleles and PBC in families and sporadic cases to evaluate the genetic components of the disease. METHODS: We performed whole exome sequencing in three PBC families. We genotyped HLA-DRB1 and calculated the association between HLA-DRB1 alleles and the encoding amino acid sequences with the clinical features. RESULTS: Ten variants harboured the HLA-DRB1 gene associated with PBC. DRB1×07:01, 14:01 and 14:05 were highly increased in PBC. Ten coding region polymorphisms were associated with PBC that encode the amino acid variants of HLA-DR ß54, ß59 and ß66 located in the peptide-binding site of the MHC molecule. Glutamine at position 54 was confirmed as a risk amino acid, verifying the results of familial aggregation analysis of PBC families. DISCUSSION: Familial aggregation analysis indicated that HLA-DRB1 is a candidate gene for the risk of disease course. Considering that amino acid variations are critical to peptide-binding properties, they underlie the major component of MHC association with PBC.


Assuntos
Predisposição Genética para Doença/genética , Cadeias HLA-DRB1/genética , Cirrose Hepática Biliar/genética , Idoso , Alelos , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Polimorfismo Genético , Fatores de Risco , Sequenciamento do Exoma
16.
Talanta ; 239: 123083, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861485

RESUMO

The number of death due to cancer-related diseases each year is at the alarming level and is constantly growing. Tools that can effectively and conveniently detect cancer cell apoptosis can play a significant role in cancer research, cancer therapy, and other related industries. Herein, we fabricated, for the first time, an ultrasensitive, disposable, self-enhanced off-on electrochemiluminescence (ECL) biosensor based on ternary Ru-PEI@PCN-333(Al) system to determine caspase-3 activity, the biomarker of apoptosis. The biosensor had a low detection limit of 0.017 pg/mL and was able to enhance the ECL emission and stability. A solid-state (SS) ECL strategy was adopted to overcome the relatively weak ECL emission due to the long distance between electrochemiluminophore and electrode surface. The analysis requires only one incubation step, which can significantly reduce the operational complexity and time. The biosensor had higher sensitivity, and the off-on ECL mode was achieved using caspase-3 as a switch. The on-site and rapid detection capability of the biosensor was achieved by the introduction of disposable screen-printed electrodes (SPEs). This study lays a foundation for the development of more advanced, ingenious, portable and reliable ECL devices for biosensing not only caspase-3, but also other bioanalytes.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Caspase 3 , Medições Luminescentes
17.
J Hazard Mater ; 419: 126466, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34323704

RESUMO

Direct Z-scheme Bi5O7I/UiO-66-NH2 (denoted as BU-x) heterojunction photocatalysts were successfully constructed through ball-milling method. Photocatalytic activities of the as-prepared BU-x samples were determined by using a typical fluoroquinolone antibiotic, ciprofloxacin (CIP). All BU-x heterojunctions exhibited better CIP removal performances than that of pristine Bi5O7I and UiO-66-NH2 upon exposure to white light irradiation. In comparison, the heterojunction with UiO-66-NH2 content of 50 wt% (BU-5) showed excellent structural stability and the optimal adsorption-photodegradation efficiency for the CIP removal. The removal efficiency of CIP (10 mg/L) over BU-5 (0.75 g/L) achieved 96.1% within 120 min illumination. Meanwhile, the effect of photocatalyst dosage, pH and inorganic anions were systemically explored. Reactive species trapping experiments, electron spin resonance (ESR) signals, Mott-Schottky measurements and density functional theory (DFT) simulation revealed that the photo-generated holes (h+), hydroxyl radical (·OH) and superoxide radical (·O2-) played crucial roles in CIP degradation. This result can be ascribed to that the unique Z-scheme charge transfer configuration retained the excellent redox capacities of Bi5O7I and UiO-66-NH2. Meanwhile, the CIP degradation pathways and the toxicity of various intermediates were subsequently analyzed. This work provided a feasible idea for removing antibiotics by bismuth-rich bismuth oxyhalide/MOF-based heterostructured photocatalysts.


Assuntos
Bismuto , Ciprofloxacina , Antibacterianos/toxicidade , Catálise , Ciprofloxacina/toxicidade , Fotólise
18.
Chemosphere ; 280: 130659, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33934000

RESUMO

Series of MIL-100(Fe)/CoS composites (MxCy) were facilely fabricated using ball-milling method. The optimum M50C50 exhibited extremely higher Fenton-like catalytic degradation activity toward bisphenol A (BPA) than the pristine MIL-100(Fe) and CoS. The significant improvement of BPA degradation was attributed to the synergetic effect between MIL-100(Fe) and CoS with the synergistic factor being 95.7%, in which the Fe-S bonds formed at the interface of the two components facilitate the Fe3+/Fe2+ cycle by improving the electron mobility both from Co to Fe and from S to Fe. Furthermore, the influence factors like co-existing inorganic ions and pH values on the catalysis activity of M50C50 were explored. The possible reaction mechanism was proposed and confirmed by both active species capture tests and electron spin resonance (ESR) determinations. It was found that M50C50 demonstrated good reusability and water stability, in which the morphology and structure were not changed obviously after five runs' operation. To our best knowledge, it is the first work concerning the interfacial interaction of Fe-MOF/MSx to promote Fe3+/Fe2+ cycle in Fe-MOFs for the purpose of organic pollutants degradation in the Fenton-like AOPs system.


Assuntos
Estruturas Metalorgânicas , Compostos Benzidrílicos , Íons , Fenóis
19.
Sensors (Basel) ; 20(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998316

RESUMO

Visual-based object detection and understanding is an important problem in computer vision and signal processing. Due to their advantages of high mobility and easy deployment, unmanned aerial vehicles (UAV) have become a flexible monitoring platform in recent years. However, visible-light-based methods are often greatly influenced by the environment. As a result, a single type of feature derived from aerial monitoring videos is often insufficient to characterize variations among different abnormal crowd behaviors. To address this, we propose combining two types of features to better represent behavior, namely, multitask cascading CNN (MC-CNN) and multiscale infrared optical flow (MIR-OF), capturing both crowd density and average speed and the appearances of the crowd behaviors, respectively. First, an infrared (IR) camera and Nvidia Jetson TX1 were chosen as an infrared vision system. Since there are no published infrared-based aerial abnormal-behavior datasets, we provide a new infrared aerial dataset named the IR-flying dataset, which includes sample pictures and videos in different scenes of public areas. Second, MC-CNN was used to estimate the crowd density. Third, MIR-OF was designed to characterize the average speed of crowd. Finally, considering two typical abnormal crowd behaviors of crowd aggregating and crowd escaping, the experimental results show that the monitoring UAV system can detect abnormal crowd behaviors in public areas effectively.

20.
Front Neurol ; 11: 555733, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123075

RESUMO

This study aims to investigate functional brain reorganization brought about by the loss of physical movement and sensory feedback in lower limbs in chronic spinal cord injury (SCI). Eleven paraplegia patients with SCI and 13 healthy controls (HCs) were recruited. The experimental task used was a visuomotor imagery task requiring subjects to engage in visualization of repetitive tapping movements of the upper or lower limbs. Blood oxygen level-dependent (BOLD) responses were captured during the experimental task, along with the accuracy rate and the response time. The SCI patients performed worse in the Rey Auditory Verbal Learning Test (RAVLT) and the Trail Making Test. SCI patients had a larger BOLD signal in the left lingual gyrus and right external globus pallidus (GPe) when imagining lower-limb movements. For the upper-limb task, SCI patients showed stronger BOLD responses than the HCs in extensive areas over the brain, including the bilateral precentral gyrus (preCG), bilateral inferior parietal gyrus, right GPe, right thalamus, left postcentral gyrus, and right superior temporal gyrus. In contrast, the HCs displayed stronger BOLD responses in the medial frontal gyrus and anterior cingulate gyrus for both upper- and lower-limb tasks than the SCI patients. In the SCI group, for the upper-limb condition, the amplitudes of BOLD responses in the left preCG were negatively correlated with the time since injury (r = -0.72, p = 0.012). For the lower-limb condition, the amplitudes of BOLD responses in the left lingual gyrus were negatively correlated with the scores on the Short Delay task of the RAVLT (r = -0.73, p = 0.011). Our study provided imaging evidence for abnormal changes in brain function and worsened cognitive test performance in SCI patients. These findings suggested possible compensatory strategies adopted by the SCI patients for the loss of sensorimotor function from the lower limbs when performing a limb imagery task.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...