Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 143: 75-87, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28391821

RESUMO

BACKGROUND AND OBJECTIVE: Epilepsy is the second most common disease of the brain. Epilepsy makes it difficult for patients to live a normal life because it is difficult to predict when seizures will occur. In this regard, if seizures could be predicted a reasonable period of time before their occurrence, epilepsy patients could take precautions against them and improve their safety and quality of life. In this paper, we investigate a novel seizure precursor based on attractor state analysis for seizure prediction. METHODS: We analyze the transition process from normal to seizure attractor state and investigate a precursor phenomenon seen before reaching the seizure attractor state. From the result of an analysis, we define a quantified spectral measure in scalp EEG for seizure prediction. From scalp EEG recordings, the Fourier coefficients of six EEG frequency bands are extracted, and the defined spectral measure is computed based on the coefficients for each half-overlapped 20-second-long window. The computed spectral measure is applied to seizure prediction using a low-complexity methodology. RESULTS: Within scalp EEG, we identified an early-warning indicator before an epileptic seizure occurs. Getting closer to the bifurcation point that triggers the transition from normal to seizure state, the power spectral density of low frequency bands of the perturbation of an attractor in the EEG, showed a relative increase. A low-complexity seizure prediction algorithm using this feature was evaluated, using ∼583h of scalp EEG in which 143 seizures in 16 patients were recorded. With the test dataset, the proposed method showed high sensitivity (86.67%) with a false prediction rate of 0.367h-1 and average prediction time of 45.3min. CONCLUSIONS: A novel seizure prediction method using scalp EEG, based on attractor state analysis, shows potential for application with real epilepsy patients. This is the first study in which the seizure-precursor phenomenon of an epileptic seizure is investigated based on attractor-based analysis of the macroscopic dynamics of the brain. With the scalp EEG, we first propose use of a spectral feature identified for seizure prediction, in which the dynamics of an attractor are excluded, and only the perturbation dynamics from the attractor are considered.


Assuntos
Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Diagnóstico por Computador , Reações Falso-Positivas , Feminino , Humanos , Masculino , Neurônios/patologia , Valor Preditivo dos Testes , Couro Cabeludo , Sensibilidade e Especificidade
2.
PLoS One ; 10(10): e0140172, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26439385

RESUMO

From the perspective of systems science, tumorigenesis can be hypothesized as a critical transition (an abrupt shift from one state to another) between proliferative and apoptotic attractors on the state space of a molecular interaction network, for which an attractor is defined as a stable state to which all initial states ultimately converge, and the region of convergence is called the basin of attraction. Before the critical transition, a cellular state might transit between the basin of attraction for an apoptotic attractor and that for a proliferative attractor due to the noise induced by the inherent stochasticity in molecular interactions. Such a flickering state transition (state transition between the basins of attraction for alternative attractors from the impact of noise) would become more frequent as the cellular state approaches near the boundary of the basin of attraction, which can increase the variation in the estimate of the respective basin size. To investigate this for colorectal tumorigenesis, we have constructed a stochastic Boolean network model of the molecular interaction network that contains an important set of proteins known to be involved in cancer. In particular, we considered 100 representative sequences of 20 gene mutations that drive colorectal tumorigenesis. We investigated the appearance of cancerous cells by examining the basin size of apoptotic, quiescent, and proliferative attractors along with the sequential accumulation of gene mutations during colorectal tumorigenesis. We introduced a measure to detect the flickering state transition as the variation in the estimate of the basin sizes for three-phenotype attractors from the impact of noise. Interestingly, we found that this measure abruptly increases before a cell becomes cancerous during colorectal tumorigenesis in most of the gene mutation sequences under a certain level of stochastic noise. This suggests that a frequent flickering state transition can be a precritical phenomenon of colorectal tumorigenesis.


Assuntos
Carcinogênese/genética , Neoplasias Colorretais/genética , Redes Reguladoras de Genes , Carcinogênese/metabolismo , Carcinogênese/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...