Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Eng ; 18(1): 31, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715085

RESUMO

Alcohol consumption, a pervasive societal issue, poses considerable health risks and socioeconomic consequences. Alcohol-induced hepatic disorders, such as fatty liver disease, alcoholic hepatitis, chronic hepatitis, liver fibrosis, and cirrhosis, underscore the need for comprehensive research. Existing challenges in mimicking chronic alcohol exposure in cellular systems, attributed to ethanol evaporation, necessitate innovative approaches. In this study, we developed a simple, reusable, and controllable device for examining the physiological reactions of hepatocytes to long-term alcohol exposure. Our approach involved a novel device designed to continuously release ethanol into the culture medium, maintaining a consistent ethanol concentration over several days. We evaluated device performance by examining gene expression patterns and cytokine secretion alterations during long-term exposure to ethanol. These patterns were correlated with those observed in patients with alcoholic hepatitis. Our results suggest that our ethanol-releasing device can be used as a valuable tool to study the mechanisms of chronic alcohol-mediated hepatic diseases at the cellular level. Our device offers a practical solution for studying chronic alcohol exposure, providing a reliable platform for cellular research. This innovative tool holds promise for advancing our understanding of the molecular processes involved in chronic alcohol-mediated hepatic diseases. Future research avenues should explore broader applications and potential implications for predicting and treating alcohol-related illnesses.

2.
Langmuir ; 40(10): 5391-5400, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38416015

RESUMO

We present an innovative solvent-free micromolding technique for rapidly fabricating complex polymer microparticles with three-dimensional (3D) shapes utilizing a surface tension-induced dipping process. Our fabrication process involves loading a photocurable solution into micromolds through mold dipping. The loaded solution, induced by surface tension, undergoes spatial deformation upon mold removal caused by surface forces, ultimately acquiring an anisotropic shape before photopolymerization. Results show that the amount of photocurable solution loaded depends on the degree of capillary penetration, which can be adjusted by varying the dipping time and mold height. It enables the production of polymer particles with precisely controlled 3D shapes without diluting them with volatile organic solvents. Sequential micromolding enables the spatial stacking of the polymer domain through a bottom-up approach, facilitating the creation of complex multicompartmental microparticles with independently controlled compartments. Finally, we demonstrated the successful simultaneous conjugation of multiple model-fluorescent proteins through the biofunctionalization of microparticles, indicating functional stability and effective conjugation of hydrophilic molecules such as proteins. We also extend our capacity to create bicompartmental microparticles with distinct functionalities in each compartment, revealing spatially controlled functional structures. In summary, these findings demonstrate a straightforward, rapid, and reliable method for producing highly uniform complex particles with precise control over the 3D shape and compartmentalization, all accomplished without the use of organic solvents.

3.
Chem Eng J ; 455: 140753, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36506703

RESUMO

The COVID-19 pandemic and the resulting supply chain disruption have rekindled crucial needs for safe storage and transportation of essential items. Despite recent advances, existing temperature monitoring technologies for cold chain management fall short in reliability, cost, and flexibility toward customized cold chain management for various products with different required temperature. In this work, we report a novel capsule-based colorimetric temperature monitoring system with precise and readily tunable temperature ranges. Triple emulsion drop-based microfluidic technique enables rapid production of monodisperse microcapsules with an interstitial phase-change oil (PCO) layer with precise control over its dimension and composition. Liquid-solid phase transition of the PCO layer below its freezing point triggers the release of the encapsulated payload yielding drastic change in color, allowing user-friendly visual monitoring in a highly sensitive manner. Simple tuning of the PCO layer's compositions can further broaden the temperature range in a precisely controlled manner. The proposed simple scheme can readily be formulated to detect both temperature rise in the frozen environment and freeze detection as well as multiple temperature monitoring. Combined, these results support a significant step forward for the development of customizable colorimetric monitoring of a broad range of temperatures with precision.

4.
ACS Appl Mater Interfaces ; 14(2): 2597-2604, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34983184

RESUMO

In nature, individual cells are compartmentalized by a membrane that protects the cellular elements from the surrounding environment while simultaneously equipped with an antioxidant defense system to alleviate the oxidative stress resulting from light, oxygen, moisture, and temperature. However, this mechanism has not been realized in cellular mimics to effectively encapsulate and retain highly reactive antioxidants. Here, we report cell-inspired hydrogel microcapsules with an interstitial oil layer prepared by utilizing triple emulsion drops as templates to achieve enhanced retention of antioxidants. We employ ionic gelation for the hydrogel shell to prevent exposure of the encapsulated antioxidants to free radicals typically generated during photopolymerization. The interstitial oil layer in the microcapsule serves as an stimulus-responsive diffusion barrier, enabling efficient encapsulation and retention of antioxidants by providing an adequate pH microenvironment until osmotic pressure is applied to release the cargo on-demand. Moreover, addition of a lipophilic reducing agent in the oil layer induces a complementary reaction with the antioxidant, similar to the nonenzymatic antioxidant defense system in cells, leading to enhanced retention of the antioxidant activity. Furthermore, we show the complete recovery and even further enhancement in antioxidant activity by lowering the storage temperature, which decreases the oxidation rate while retaining the complementary reaction with the lipophilic reducing agent.


Assuntos
Antioxidantes/farmacologia , Materiais Biocompatíveis/farmacologia , Cápsulas/farmacologia , Hidrogéis/farmacologia , Óleo Mineral/química , Animais , Antioxidantes/química , Materiais Biocompatíveis/química , Células CACO-2 , Cápsulas/química , Humanos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Teste de Materiais , Camundongos , Células NIH 3T3 , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...