Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Opt Lett ; 49(13): 3713-3716, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950249

RESUMO

We report intriguing continuous-wave quasi-single-mode random lasing in methylammonium lead bromide (CH3NH3PbBr3) perovskite films synthesized on a patterned sapphire substrate (PSS) under excitation of a 532-nm laser diode. The random laser emission evolves from a typical multi-mode to a quasi-single-mode with increasing pump fluences. The full width at half-maximum of the lasing peak is as narrow as 0.06 nm at ∼547.8 nm, corresponding to a high Q-factor of ∼9000. Such excellent random lasing performance is plausibly ascribed to the exciton resonance in optical absorption at 532 nm and the enhanced optical resonance due to the increased likelihood for randomly scattered light to re-enter the optical loops formed among the perovskite grains by multi-reflection at the perovskite/PSS interfaces. This work demonstrates the promise of single-mode perovskite random lasers by introducing the exciton resonance effect and ingeniously designed periodic nano/micro optical structure.

2.
Nat Commun ; 15(1): 5607, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965277

RESUMO

Reducing interface nonradiative recombination is important for realizing highly efficient perovskite solar cells. In this work, we develop a synergistic bimolecular interlayer (SBI) strategy via 4-methoxyphenylphosphonic acid (MPA) and 2-phenylethylammonium iodide (PEAI) to functionalize the perovskite interface. MPA induces an in-situ chemical reaction at the perovskite surface via forming strong P-O-Pb covalent bonds that diminish the surface defect density and upshift the surface Fermi level. PEAI further creates an additional negative surface dipole so that a more n-type perovskite surface is constructed, which enhances electron extraction at the top interface. With this cooperative surface treatment, we greatly minimize interface nonradiative recombination through both enhanced defect passivation and improved energetics. The resulting p-i-n device achieves a stabilized power conversion efficiency of 25.53% and one of the smallest nonradiative recombination induced Voc loss of only 59 mV reported to date. We also obtain a certified efficiency of 25.05%. This work sheds light on the synergistic interface engineering for further improvement of perovskite solar cells.

4.
Appl Opt ; 63(11): 2752-2758, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856370

RESUMO

Recently, GeSe has emerged as a highly promising photovoltaic absorber material due to its excellent optoelectronic properties, nontoxicity, and high stability. Although many advantages make GeSe well suited for thin-film solar cells, the power conversion efficiency of the GeSe thin-film solar cell is still much below the theoretical maximum efficiency. One of the challenges lies in controlling the crystal orientation of GeSe to enhance solar cell performance. The two-step preparation of GeSe thin films has not yet been reported to grow along the [111] orientation. In this work, we study the effect of a post-annealing treatment on the GeSe thin films and the performance of the solar cells. It was found that amorphous GeSe films can be converted into polycrystalline films with different orientations by changing the post-annealing temperature. [111]-oriented and [100]-oriented GeSe thin films were successfully prepared on the same substrate by optimizing the annealing conditions. With the structure of Au/GeSe/CdS/ITO cell devices, PCEs of 0.14% and 0.16% were ultimately achieved.

5.
Nat Commun ; 15(1): 5232, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897991

RESUMO

Dielectric ceramic capacitors with ultrahigh power densities are fundamental to modern electrical devices. Nonetheless, the poor energy density confined to the low breakdown strength is a long-standing bottleneck in developing desirable dielectric materials for practical applications. In this instance, we present a high-entropy tungsten bronze-type relaxor ferroelectric achieved through an equimolar-ratio element design, which realizes a giant recoverable energy density of 11.0 J·cm-3 and a high efficiency of 81.9%. Moreover, the atomic-scale microstructural study confirms that the excellent comprehensive energy storage performance is attributed to the increased atomic-scale compositional heterogeneity from high configuration entropy, which modulates the relaxor features as well as induces lattice distortion, resulting in reduced polarization hysteresis and enhanced breakdown endurance. This study provides evidence that developing high-entropy relaxor ferroelectric material via equimolar-ratio element design is an effective strategy for achieving ultrahigh energy storage characteristics. Our results also uncover the immense potential of tetragonal tungsten bronze-type materials for advanced energy storage applications.

6.
Nat Commun ; 15(1): 4362, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778029

RESUMO

Light-induced spin currents with the faster response is essential for the more efficient information transmission and processing. Herein, we systematically explore the effect of light illumination energy and direction on the light-induced spin currents in the W/Y3Fe5O12 heterojunction. Light-induced spin currents can be clearly categorized into two types. One is excited by the low light intensity, which mainly involves the photo-generated spin current from spin photovoltaic effect. The other is caused by the high light intensity, which is the light-thermally induced spin current and mainly excited by spin Seebeck effect. Under low light-intensity illumination, light-thermally induced temperature gradient is very small so that spin Seebeck effect can be neglected. Furthermore, the mechanism on spin photovoltaic effect is fully elucidated, where the photo-generated spin current in Y3Fe5O12 mainly originates from the process of spin precession induced by photons. These findings provide some deep insights into the origin of light-induced spin current.

7.
Nat Commun ; 15(1): 3799, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714769

RESUMO

Intriguing "slidetronics" has been reported in van der Waals (vdW) layered non-centrosymmetric materials and newly-emerging artificially-tuned twisted moiré superlattices, but correlative experiments that spatially track the interlayer sliding dynamics at atomic-level remain elusive. Here, we address the decisive challenge to in-situ trace the atomic-level interlayer sliding and the induced polarization reversal in vdW-layered yttrium-doped γ-InSe, step by step and atom by atom. We directly observe the real-time interlayer sliding by a 1/3-unit cell along the armchair direction, corresponding to vertical polarization reversal. The sliding driven only by low energetic electron-beam illumination suggests rather low switching barriers. Additionally, we propose a new sliding mechanism that supports the observed reversal pathway, i.e., two bilayer units slide towards each other simultaneously. Our insights into the polarization reversal via the atomic-scale interlayer sliding provide a momentous initial progress for the ongoing and future research on sliding ferroelectrics towards non-volatile storages or ferroelectric field-effect transistors.

9.
Adv Mater ; : e2403929, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744294

RESUMO

2D polarization materials have emerged as promising candidates for meeting the demands of device miniaturization, attributed to their unique electronic configurations and transport characteristics. Although the existing inherent and sliding mechanisms are increasingly investigated in recent years, strategies for inducing 2D polarization with innovative mechanisms remain rare. This study introduces a novel 2D Janus state by modulating the puckered structure. Combining scanning probe microscopy, transmission electron microscopy, and density functional theory calculations, this work realizes force-triggered out-of-plane and in-plane dipoles with distorted smaller warping in GeSe. The Janus state is preserved after removing the external mechanical perturbation, which could be switched by modulating the sliding direction. This work offers a versatile method to break the space inversion symmetry in a 2D system to trigger polarization in the atomic scale, which may open an innovative insight into configuring novel 2D polarization materials.

10.
Small ; 20(26): e2400807, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573941

RESUMO

Perovskite solar cells (PSCs) stand at the forefront of photovoltaic research, with current efficiencies surpassing 26.1%. This review critically examines the role of electron transport materials (ETMs) in enhancing the performance and longevity of PSCs. It presents an integrated overview of recent advancements in ETMs, like TiO2, ZnO, SnO2, fullerenes, non-fullerene polymers, and small molecules. Critical challenges are regulated grain structure, defect passivation techniques, energy level alignment, and interfacial engineering. Furthermore, the review highlights innovative materials that promise to redefine charge transport in PSCs. A detailed comparison of state-of-the-art ETMs elucidates their effectiveness in different perovskite systems. This review endeavors to inform the strategic enhancement and development of n-type electron transport layers (ETLs), delineating a pathway toward the realization of PSCs with superior efficiency and stability for potential commercial deployment.

11.
Adv Sci (Weinh) ; 11(23): e2310189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38468446

RESUMO

Metal organic framework (MOF) films have attracted abundant attention due to their unique characters compared with MOF particles. But the high-temperature reaction and solvent corrosion limit the preparation of MOF films on fragile substrates, hindering further applications. Fabricating macro-sized continuous free-standing MOF films and transferring them onto fragile substrates are a promising alternative but still challenging. Here, a universal strategy to prepare transferrable macro-sized continuous free-standing MOF films with the assistance of oxide nanomembranes prepared by atomic layer deposition and studied the growth mechanism is developed. The oxide nanomembranes serve not only as reactant, but also as interfacial layer to maintain the integrality of the free-standing structure as the stacked MOF particles are supported by the oxide nanomembrane. The centimeter-scale free-standing MOF films can be transferred onto fragile substrates, and all in one device for glucose sensing is assembled. Due to the strong adsorption toward glucose molecules, the obtained devices exhibit outstanding performance in terms of high sensitivity, low limit of detection, and long durability. This work opens a new window toward the preparation of MOF films and MOF film-based biosensor chip for advantageous applications in post-Moore law period.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Glucose , Desenho de Equipamento/métodos
12.
Adv Sci (Weinh) ; 11(22): e2400018, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38502873

RESUMO

Mix-dimensional heterojunctions (MDHJs) photodetectors (PDs) built from bulk and 2D materials are the research focus to develop hetero-integrated and multifunctional optoelectronic sensor systems. However, it is still an open issue for achieving multiple effects synergistic characteristics to boost sensitivity and enrich the prospect in artificial bionic systems. Herein, electrically tunable Te/WSe2 MDHJs phototransistors are constructed, and an ultralow dark current below 0.1 pA and a large on/off rectification ratio of 106 is achieved. Photoconductive, photovoltaic, and photo-thermoelectric conversions are simultaneously demonstrated by tuning the gate and bias. By these synergistic effects, responsivity and detectivity respectively reach 13.9 A W-1 and 1.37 × 1012 Jones with 400 times increment. The Te/WSe2 MDHJs PDs can function as artificial bionic visual systems due to the comparable response time to those of the human visual system and the presence of transient positive and negative response signals. This work offers an available strategy for intelligent optoelectronic devices with hetero-integration and multifunctions.

13.
ACS Appl Mater Interfaces ; 16(12): 15446-15456, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38481056

RESUMO

Recently, various transition metal dichalcogenides (TMDs)/Ga2O3 heterostructures have emerged as excellent candidates for the development of broadband photodetection, exhibiting various merits such as broadband optical absorption, efficient interlayer carrier transfer, a relatively simple fabrication process, and potential for flexibility. In this work, vertically stacked MoSe2/Ga2O3, WS2/Ga2O3, and WSe2/Ga2O3 heterostructures were experimentally synthesized, all exhibiting broadband light absorption, spanning at least from 200 to 800 nm. The absorption coefficients of these TMDs/Ga2O3 heterostructures are significantly improved compared to those of individual Ga2O3 films. The superior performance can be attributed to the type-I band alignment and efficient interlayer carrier transfer, which result from various band offsets along with the different doping conditions of the TMD layers, leading to distinct photoluminescence (PL) emission properties. Through a detailed analysis of the excitation-power-dependent PL spectra, we offer an in-depth discussion of the interlayer carrier transfer mechanism in the TMDs/Ga2O3 heterostructures. Regarding interlayer coupling effects, the shift of the EF of TMD layers plays a crucial role in modulating their trion emission properties. These findings suggest that these three TMDs/Ga2O3 heterostructures have great potential in broadband photodetection, and our in-depth physical mechanism analysis lays a solid foundation for a new device design.

14.
Nat Commun ; 15(1): 2313, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485978

RESUMO

Arising from the extreme/saddle point in electronic bands, Van Hove singularity (VHS) manifests divergent density of states (DOS) and induces various new states of matter such as unconventional superconductivity. VHS is believed to exist in one and two dimensions, but rarely found in three dimension (3D). Here, we report the discovery of 3D VHS in a topological magnet EuCd2As2 by magneto-infrared spectroscopy. External magnetic fields effectively control the exchange interaction in EuCd2As2, and shift 3D Weyl bands continuously, leading to the modification of Fermi velocity and energy dispersion. Above the critical field, the 3D VHS forms and is evidenced by the abrupt emergence of inter-band transitions, which can be quantitatively described by the minimal model of Weyl semimetals. Three additional optical transitions are further predicted theoretically and verified in magneto-near-infrared spectra. Our results pave the way to exploring VHS in 3D systems and uncovering the coordination between electronic correlation and the topological phase.

15.
Front Oncol ; 14: 1327899, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529377

RESUMO

Background: Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm with malignant potential. Bladder IMT is even rarer and mainly treated by surgical resection However, partial or radical cystectomy would affect the quality of life of patients due to major surgical trauma, and classical TURBT is hard to avoid intraoperative complications including obturator nerve reflex and bleeding etc. Therefore, the safe and effective better choice of surgical approaches become critical to bladder IMT. Case presentation: A 42-year-old male patient was admitted to the department of urology with persistent painless gross hematuria for more than 10 days without the presentation of hypertension. Preoperative routine urine examination of red blood cells was 7738.9/HPF (normal range ≤ 3/HPF). CTU indicated a space occupying lesion (6.0 cm×5.0 cm) in the left posterior wall of the bladder with heterogeneous enhancement in the excretory phase. MRI also indicated bladder tumor with slightly equal SI on T1WI and mixed high SI on T2WI (6.0 cm×5.1cm×3.5cm) in the left posterior wall of the bladder. En bloc resection of bladder IMT with 1470 nm diode laser in combination of removing the enucleated tumor by the morcellator system was performed. Postoperative pathological examination revealed bladder IMT, with IHC positive for Ki-67 (15-20%), CK AE1/AE3, SMA, and Desmin of bladder IMT and negative for ALK of bladder IMT as well as FISH negative for ALK gene rearrangement. Second TUR with 1470 nm diode laser was performed within 6 weeks to reduce postoperative risk of recurrence due to highly malignant potential for the high expression of Ki-67 (15-20%) and negative ALK in IHC staining. The second postoperative pathology report showed chronic inflammation concomitant with edema of the bladder mucosa without bladder IMT, furthermore no tumor was observed in muscularis propria layer of bladder. No recurrence occurred during the period of 24-month follow-up. Conclusion: En bloc resection of bladder IMT in combination of the following second transurethral resection with 1470 nm diode laser is a safe and effective surgical approach for the huge bladder IMT with highly malignant potential.

16.
Adv Mater ; 36(21): e2313134, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331419

RESUMO

The barrier structure is designed to enhance the operating temperature of the infrared detector, thereby improving the efficiency of collecting photogenerated carriers and reducing dark current generation, without suppressing the photocurrent. However, the development of barrier detectors using conventional materials is limited due to the strict requirements for lattice and band matching. In this study, a high-performance unipolar barrier detector is designed utilizing a black arsenic phosphorus/molybdenum disulfide/black phosphorus van der Waals heterojunction. The device exhibits a broad response bandwidth ranging from visible light to mid-wave infrared (520 nm to 4.6 µm), with a blackbody detectivity of 2.7 × 1010 cmHz-1/2 W-1 in the mid-wave infrared range at room temperature. Moreover, the optical absorption anisotropy of black arsenic phosphorus enables polarization resolution detection, achieving a polarization extinction ratio of 35.5 at 4.6 µm. Mid-wave infrared imaging of the device is successfully demonstrated at room temperature, highlighting the significant potential of barrier devices based on van der Waals heterojunctions in mid-wave infrared detection.

17.
Adv Mater ; 36(21): e2312959, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332502

RESUMO

Ternary strategyopens a simple avenue to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). The introduction of wide bandgap polymer donors (PDs) as third component canbetter utilize sunlight and improve the mechanical and thermal stability of active layer. However, efficient ternary OSCs (TOSCs) with two PDs are rarely reported due to inferior compatibility and shortage of efficient PDs match with acceptors. Herein, two PDs-(PBB-F and PBB-Cl) are adopted in the dual-PDs ternary systems to explore the underlying mechanisms and improve their photovoltaic performance. The findings demonstrate that the third components exhibit excellent miscibility with PM6 and are embedded in the host donor to form alloy-like phase. A more profound mechanism for enhancing efficiency through dual mechanisms, that are the guest energy transfer to PM6 and charge transport at the donor/acceptor interface, has been proposed. Consequently, the PM6:PBB-Cl:BTP-eC9 TOSCs achieve PCE of over 19%. Furthermore, the TOSCs exhibit better thermal stability than that of binary OSCs due to the reduction in spatial site resistance resulting from a more tightly entangled long-chain structure. This work not only provides an effective approach to fabricate high-performance TOSCs, but also demonstrates the importance of developing dual compatible PD materials.

18.
Small ; 20(24): e2307347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38191777

RESUMO

Cu2ZnSn(S,Se)4 (CZTSSe) has attracted great interest in thin-film solar cells due to its excellent photoelectric performance in past decades, and recently is gradually expanding to the field of photodetectors. Here, the CZTSSe self-powered photodetector is prepared by using traditional photovoltaic device structure. Under zero bias, it exhibits the excellent performance with a maximum responsivity of 0.77 A W-1, a high detectivity of 8.78 × 1012 Jones, and a wide linear dynamic range of 103 dB. Very fast response speed with the rise/decay times of 0.576/1.792 µs, and ultra-high switching ratio of 3.54 × 105 are obtained. Comprehensive electrical and microstructure characterizations confirm that element diffusion among ITO, CdS, and CZTSSe layers not only optimizes band alignment of CdS/CZTSSe, but also suppresses the formation of interface defects. Such a suppression of interface defects and spike-like band alignment significantly inhibit carrier nonradiative recombination at interface and promote carrier transport capability. The low trap density in CZTSSe and low back contact barrier of CZTSSe/Mo could be responsible for the very fast response time of photodetector. This work definitely provides guidance for designing a high performance self-powered photodetector with high photoresponse, high switching ratio, fast response speed, and broad linear dynamic range.

20.
Adv Sci (Weinh) ; 11(12): e2307396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225755

RESUMO

The utilization of hot carriers as a means to surpass the Shockley-Queasier limit represents a promising strategy for advancing highly efficient photovoltaic devices. Quantum dots, owing to their discrete energy states and limited multi-phonon cooling process, are regarded as one of the most promising materials. However, in practical implementations, the presence of numerous defects and discontinuities in colloidal quantum dot (CQD) films significantly curtails the transport distance of hot carriers. In this study, the harnessing of excess energies from hot-carriers is successfully demonstrated and a world-record carrier diffusion length of 15 µm is observed for the first time in colloidal systems, surpassing existing hot-carrier materials by more than tenfold. The observed phenomenon is attributed to the specifically designed honeycomb-like topological structures in a HgTe CQD superlattice, with its long-range periodicity confirmed by High-Resolution Transmission Electron Microscopy(HR-TEM), Selected Area Electron Diffraction(SAED) patterns, and low-angle X-ray diffraction (XRD). In such a superlattice, nonlocal hot carrier transport is supported by three unique physical properties: the wavelength-independent responsivity, linear output characteristics and microsecond fast photoresponse. These findings underscore the potential of HgTe CQD superlattices as a feasible approach for efficient hot carrier collection, thereby paving the way for practical applications in highly sensitive photodetection and solar energy harvesting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...