Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 952: 175997, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39233071

RESUMO

Solving the challenges faced during the measurement of the cross-interface transfer of perfluoroalkyl acids (PFAAs) in lakes is crucial for clarifying environmental behaviours of these chemicals and their efficient governance. This study developed a multimedia fugacity model based on the quantitative water-air-sediment interaction (QWASI) covering abiotic/biotic matrices to investigate the cross-interface transfer and fate of PFAAs in Luoma Lake, a typical PFAA-contaminated shallow lake in eastern China. The accuracy and reliability of the established model were confirmed using Percent bias and Monte Carlo simulation, respectively. Using the QWASI model, the multimedia transfer of the PFAAs and their accumulation and persistence in different sub-compartments were described and measured, and the differences among individual PFAAs were explored. The simulation results showed that the sedimentation and resuspension of PFAAs were the most intense cross-interfacial transfers, and the sediments served as a chemical sink in the long term. A significant negative correlation of NC-F (the number of CF bonds) with the relative outflow flux (TW·out-ct) but a positive correlation with the relative net transfer across the interface between water and aquatic plants (Tp-ct) was detected, indicating that the PFAA migration capacity decreased but the bioaccumulation potential increased with the CF bond number. The persistence in water (Pw) of individual PFAAs ranged from 19.65d (PFOA) to 32.22d (PFOS), with an average of 26.15d; their persistence in sediment (Ps) ranged from 432d (PFBA) to 3216d (PFOS), with an average of 1524d, increasing linearly with an increase in NC-F. The water advection flows into and out of the lake (QW·in and QW·out), the PFAA concentration of water inflow (CW·in), and bioconcentration factor of aquatic plants (BCFp) were the primary parameters sensitive to PFAAs in all sub-compartments, which are essential indexes for exploring promising remediation pathways for lacustrine PFAA contamination based on the fugacity model simulation.


Assuntos
Monitoramento Ambiental , Fluorocarbonos , Lagos , Poluentes Químicos da Água , Lagos/química , China , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Modelos Químicos , Sedimentos Geológicos/química , Modelos Teóricos
2.
Environ Sci Technol ; 58(26): 11737-11747, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889003

RESUMO

Despite frequent detection of high levels of perfluoroalkyl acids (PFAAs) in sediments, research on the environmental fate of PFAAs in sediments, particularly under hydrodynamic conditions, is rather limited, challenging effective management of PFAA loadings. Therefore, this study investigated the release and transport of 15 PFAAs in sediments under environmentally relevant flow velocities using recirculating flumes and revealed the underlying release mechanisms by identifying related momentum transfer. An increased velocity enhanced the release magnitude of total PFAAs by a factor of 3.09. The release capacity of short-chain PFAAs was notably higher than that of long-chain PFAAs, and this pattern was further amplified by flow velocity. Pore-water drainage was the major pathway for PFAA release, with the release amount predominantly determined by flow velocity-induced release intensity and depth, as well as affected by the perfluorocarbon chain length and sediment size. The weak anion exchanger-diffusion gradients in the thin-film technique confirmed that the release depth of PFAAs increased with flow velocity. Quadrant analysis revealed that the rise in the frequency and intensity of turbulent bursts driven by sweeps and ejections at high flow velocity was the underlying cause of the increased release magnitude and depth of PFAAs.


Assuntos
Fluorocarbonos , Sedimentos Geológicos , Sedimentos Geológicos/química , Poluentes Químicos da Água , Monitoramento Ambiental
3.
Water Res ; 260: 121947, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38901312

RESUMO

The sediments in riverine environments contain notably high concentrations of perfluoroalkyl acids (PFAAs), which may be released into the water body under different hydrodynamic forces, such as those occurring at Y-shaped confluences. The release of PFAAs may pose a significant risk to the surrounding aquatic ecosystems. However, our understanding of the release and transport of PFAAs from sediments at Y-shaped confluences remains unclear. Thus, in this study, we performed a series of flume experiments to explore the effects of discharge ratio and total flow flux on the release and redistribution of PFAAs. The results indicated that these two parameters significantly affected the hydrodynamic features of confluences and the water physicochemical parameters. PFAA concentrations in the dissolved phase and suspended particulate matter (SPM) rose significantly as the discharge ratio and total flow flux increased. The dissolved phase was the predominant loading form of PFAAs, with short-chain PFAAs being the main kind, while long-chain PFAAs were dominant in the SPM. The spatial distribution pattern of PFAAs in sediments at the confluence exhibited a high degree of correspondence with hydrodynamic zones. The separation zone and maximum velocity zone were consistent with sediment regions with low and high capacities to release PFAAs, respectively. The patterns of variation in PFAA distribution were comparable to those observed in hydrodynamic zones as the discharge ratio and total flow flux varied. Furthermore, these two parameters altered the partitioning behaviors of PFAAs; specifically, the PFAAs in sediments tended to be released into the pore-water, while the liberated PFAAs tended to attach to SPM. Linear regression and correlation analyses suggested that the stream-wise and vertical flow velocity components near the sediment-water interface were the primary contributors to sediment suspension and PFAA exchange between the water column and pore-water. These findings will help us to understand the patterns of PFAA release in sediments at Y-shaped confluences and assist in the management of PFAA-contaminated sediments at these locations.


Assuntos
Fluorocarbonos , Sedimentos Geológicos , Hidrodinâmica , Poluentes Químicos da Água , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Fluorocarbonos/química , Fluorocarbonos/análise , Rios/química , Movimentos da Água , Monitoramento Ambiental
4.
Sci Total Environ ; 929: 172563, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641096

RESUMO

The dynamics and exposure risk behaviours of antibiotic resistance genes (ARGs) in the sediments of water-diversion lakes remain poorly understood. In this study, spatiotemporal investigations of ARG profiles in sediments targeting non-water (NWDP) and water diversion periods (WDP) were conducted in Luoma Lake, a typical water-diversion lake, and an innovative dynamics-based risk assessment framework was constructed to evaluate ARG exposure risks to local residents. ARGs in sediments were significantly more abundant in the WDP than in the NWDP, but there was no significant variation in their spatial distribution in either period. Moreover, the pattern of ARG dissemination in sediments was unchanged between the WDP and NWDP, with horizontal gene transfer (HGT) and vertical gene transfer (VGT) contributing to ARG dissemination in both periods. However, water diversion altered the pattern in lake water, with HGT and VGT in the NWDP but only HGT in the WDP, which were critical pathways for the dissemination of ARGs. The significantly lower ARG sediment-water partition coefficient in the WDP indicated that water diversion could shift the fate of ARGs and facilitate their aqueous partitioning. Risk assessment showed that all age groups faced a higher human exposure risk of ARGs (HERA) in the WDP than in the NWDP, with the 45-59 age group having the highest risk. Furthermore, HERA increased overall with the bacterial carrying capacity in the local environment and peaked when the carrying capacity reached three (NWDP) or four (WDP) orders of magnitude higher than the observed bacterial population. HGT and VGT promoted, whereas ODF covering gene mutation and loss mainly reduced HERA in the lake. As the carrying capacity increased, the relative contribution of ODF to HERA remained relatively stable, whereas the dominant mechanism of HERA development shifted from HGT to VGT.


Assuntos
Resistência Microbiana a Medicamentos , Exposição Ambiental , Resistência Microbiana a Medicamentos/genética , Lagos/microbiologia , Monitoramento Ambiental/métodos , Humanos , Exposição Ambiental/estatística & dados numéricos , Sedimentos Geológicos/microbiologia , Poluição da Água/estatística & dados numéricos , Análise Espaço-Temporal , Transferência Genética Horizontal , China
5.
J Environ Manage ; 348: 119232, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832298

RESUMO

The distribution and dynamics of antibiotic resistance genes (ARGs) in water-diversion lakes are poorly understood. In this study, two comparative in situ investigations of ARG profiles targeting water diversion (DP) and non-diversion periods (NDP) were conducted in Luoma Lake, a vital transfer node for the eastern route of the South-to-North Water Diversion Project in China. The results demonstrated significant spatiotemporal variations in ARG contamination and notable differences in the co-occurrence patterns of ARGs and bacterial communities between DP and NDP. Correlations among ARGs with the 16 S rRNA, and mobile genetic elements indicate that horizontal gene transfer (HGT) and vertical gene transfer (VGT) in NDP, but only HGT in DP, were the primary mechanisms of ARG proliferation and spread, implying that water diversion could be an essential control of the transfer pattern of ARGs in a lake environment. The null model analysis indicated that stochastic processes, with predominant driver of ecological drift in the lake mainly drove the assembly of ARGs. Partial least squares structural equation modeling was developed to analyze the causal effects of the factors in shaping ARG dynamics and identify the major driving forces in the DP and NDP.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Água , Resistência Microbiana a Medicamentos/genética , China
6.
J Environ Manage ; 332: 117421, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36739776

RESUMO

Turbulence generated within the vegetated confluence system is important for water quality and river management. In this study, we conducted a series of experiments to explore the extent to which emergent rigid vegetation in the confluence channel influences hydrodynamic characteristics and contaminant transport. First, a series of tests with increasing discharge ratios (from 0.35, 0.5, and 1) was conducted to quantify the effects of the discharge ratio on hydrodynamic conditions within the vegetated confluence. Then, tests with different discharge ratios were also set up to explore how contaminants released locations and modes (line and point source) influence the transport and mixing of contaminants. The results showed that increasing the discharge ratio induced larger momentum in the confluence area. The increase in discharge ratio rendered the circulation stronger, and its position came earlier in the non-vegetative area. In addition, the dimensionless turbulent kinetic energy peaked near the interface of the non/vegetated zone. With the increase in the discharge ratio, the dimensionless turbulent kinetic energy was found to be smaller. In the contaminants transport tests, the results revealed larger discharge ratio could speed up contaminants transport and mixing. The applications from this study would be helpful to pollutant transport management in natural confluences.


Assuntos
Poluentes Ambientais , Qualidade da Água , Rios , Hidrodinâmica
7.
Chemosphere ; 321: 138138, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36791817

RESUMO

Much research has been done on the preparation and application of hydrochars, but research on the release characteristics of hydrochar-derived dissolved organic matter (HDOM) is very limited; clarifying the release characteristics of HDOM is important for understanding and adjusting the environmental behaviour of hydrochar. Herein, the potential release of HDOM from rice straw-derived hydrochars prepared at different hydrothermal temperatures was investigated under various potential environmental conditions for the first time. The total release quantity and humification degree of HDOM decreased with increasing hydrothermal temperature. The critical dividing line for various hydrothermal reactions, decomposition and polymerization, was in the range of 240 °C-260 °C. Alkaline condition increased the HDOM release amount (up to 299 mg g-1), molecular weight (as high as 423 Da) and molecular diversity (8857 compounds) from rice straw-derived hydrochars. The unique substances of HDOM released under alkaline condition were mainly distributed in lipids-like substances, CRAM/lignins-like substances, aromatic structures, and tannins-like substances, while few unique substances were found under acidic condition. Additionally, CRAM/lignins-like substances were the most abundant in all HDOM samples, reaching 82%, which were relatively stable and could achieve carbon sequestration in different environments. The findings provided a new insight on understanding the potential environment behaviors of hydrochar.


Assuntos
Matéria Orgânica Dissolvida , Oryza , Temperatura , Lignina , Carbono/química
8.
Environ Pollut ; 314: 120266, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162562

RESUMO

The presence of Per-, Poly-fluoroalkyl substances (PFASs) in aquatic ecosystems has drawn broad concerns in the scientific community due to their biological toxicity. However, little has been explored regarding PFASs' removal in phytoplankton-dominated environments. This study aimed to create a simulated bacteria-algae symbiotic ecosystem to observe the potential transportation of PFASs. Mass distributions showed that sand (63-2000 µm), silt & clay (0-63 µm), the phycosphere (>3 µm plankton), and the free-living biosphere (0.22-3 µm plankton) contained 19.00, 7.78, 5.73 and 2.75% PFASs in their total mass, respectively. Significant correlations were observed between carbon chain lengths and removal rates (R2 = 0.822, p < 10-4). Structural equation models revealed potential PFAS transportation pathways, such as water-phycosphere- free-living biosphere-sand-silt&clay, and water-sand-silt&clay (p < 0.05). The presence of PFASs decreased the bacterial density but increased algal density (p < 0.01) in the planktonic environment, and PFASs with longer carbon chain lengths showed a stronger enhancement in microbial community successions (p < 0.05). In algal metabolisms, chlorophyll-a and carotenoids were the key pigments that resisted reactive oxygen species caused by PFASs. PFBA (perfluorobutyric acid) (10.38-14.68%) and PFTeDA (perfluorotetradecanoic acid) (10.33-15.96%) affected bacterial metabolisms in phycosphere the most, while in the free-living biosphere was most effected by PFPeA (perfluorovaleric acid) (13.21-13.99%) and PFDoA (perfluorododecanoic acid) (10.04-10.50%). The results of this study provide new guidance measures for PFAS removal and management in aquatic environments.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Ecossistema , Argila , Areia , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Plantas , Clorofila A , Bactérias , Carbono , Água , Carotenoides
9.
Environ Pollut ; 311: 119985, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985438

RESUMO

Quinolone antibiotics (QNs) pollution in lake environments is increasingly raising public concern due to their potential combined toxicity and associated risks. However, the spatiotemporal distribution and trophodynamics of QNs in transit-station lakes for water diversion are not well documented or understood. In this study, a comprehensive investigation of QNs in water, sediment, and aquatic fauna, including norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENR), and ofloxacin (OFL), was conducted in Luoma Lake, a major transit station for the eastern route of the South-to-North Water Diversion Project in China. The target QNs were widely distributed in the water (∑QNs: 70.12 ± 62.79 ng/L) and sediment samples (∑QNs: 13.35 ± 10.78 ng/g dw) in both the non-diversion period (NDP) and the diversion period (DP), where NOR and ENR were predominant. All the QNs were detected in all biotic samples in DP (∑QNs: 80.04 ± 20.59 ng/g dw). The concentration of ∑QNs in the water in NDP was significantly higher than those in DP, whereas the concentration in the sediments in NDP was comparable to those in DP. ∑QNs in the water-sediment system exhibited decreasing trends from northwest (NW) to southeast (SE) in both periods; however, the Koc (organic carbon normalized partition coefficients) of individual QNs in DP sharply rose compared with those in NDP, which indicated that water diversion would alter the environmental fate of QNs in Luoma Lake. In DP, all QNs, excluding NOR, were all biodiluted across the food web; whereas their bioaccumulation potentials in the SE subregion were higher than those in the NW subregion, which was in contrast to the spatial distribution of their exposure concentrations. The estimated daily QN intakes via drinking water and aquatic products suggested that residents in the SE side were exposed to greater health risks, despite less aquatic pollution in the region.


Assuntos
Quinolonas , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Norfloxacino , Quinolonas/análise , Medição de Risco , Água , Poluentes Químicos da Água/análise
10.
J Environ Manage ; 305: 114436, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999447

RESUMO

The impact of sluice operations on the distribution and fate of perfluoroalkyl acids (PFAAs) remains poorly understood. In this study, the distribution of PFAAs was investigated in water, suspended particles, sediment, and pore water from the upstream and downstream sections of six sluice gates along the Wangyu River, China. The target PFAAs were widely distributed in the dissolved phase (∑PFAAs: 447.61 ± 180.26 ng/L), particle phase (∑PFAAs: 2040.95 ± 1870.88 ng/g dw), sedimentary phase (∑PFAAs: 39.42 ± 35.38 ng/g dw), and pore water phase (∑PFAAs: 8172.54 ± 4278.60 ng/L). Our data suggest predominant detections of short-chain PFAAs such as perfluorobutanoic acid (PFBA) and perfluorohexanoic acid (PFHxA) in the four environmental media. Sediment pore water appeared as an essential repository and potential source for PFAA re-release to the river environment. The levels of PFAAs in the dissolved and suspended particle phase upstream of the sluices were significantly lower than those downstream, while the situation in the sediment and pore water phase was the opposite. Sluice operation caused PFAA redistribution among the multi-environment media but did not change the PFAA composition, which had the significant effect on the partition behavior of perfluoroalkyl carboxylic acids (PFCAs) between particles and water, as well as changed the migration pattern of PFOA, PFNA and PFOS from equilibrium to the migration state. Quantitative prediction models were developed for simulating fate of PFAAs in gate-controlled river, and the major factors affecting the distribution and fate of PFAAs were identified. Our findings provide insights into the redistribution mechanisms of PFAAs and an understanding of their environmental fate.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Fluorocarbonos/análise , Rios , Poluentes Químicos da Água/análise
11.
Environ Pollut ; 296: 118748, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958848

RESUMO

The bioaccumulation and biomagnification of perfluoroalkyl acids (PFAAs) in temperate urban lacustrine ecosystems is poorly understood. We investigated the occurrence and trophic transfer of and probabilistic health risk from 15 PFAAs in the food web of Luoma Lake, a temperate urban lake in East China. The target PFAAs were widely distributed in the water (∑PFAA: 77.09 ± 9.07 ng/L), suspended particulate matter (SPM) (∑PFAA: 284.07 ± 118.05 ng/g dw), and sediment samples (∑PFAA: 67.77 ± 17.96 ng/g dw) and occurred in all biotic samples (∑PFAA: 443.27 ± 124.89 ng/g dw for aquatic plants; 294.99 ± 90.82 for aquatic animals). PFBA was predominant in water and SPM, with 40.11% and 21.35% of the total PFAAs, respectively, while PFOS was the most abundant in sediments (14.11% of the total PFAAs) and organisms (14.33% of the total PFAAs). Sediment exposure may be the major route of biological uptake of PFAAs. The PFAA accumulation capacity was the highest in submerged plants, followed by emergent plants > bivalves > crustaceans > fish > floating plants. Long-chain PFAAs were biomagnified, and short-chain PFAAs were biodiluted across the entire lacustrine food web. PFOS exhibited the greatest bioaccumulation and biomagnification potential among the target PFAAs. However, biomagnification of short-chain PFAAs was also observed within the low trophic-level part of the food web. Human health risk assessment indicated that perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) posed health risks to all age groups, while the other PFAAs were unlikely to cause immediate harm to consumers in the region. This study fills a gap in the knowledge of the transfer of PFAAs in the food webs of temperate urban lakes.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Animais , Bioacumulação , China , Ecossistema , Monitoramento Ambiental , Fluorocarbonos/análise , Cadeia Alimentar , Humanos , Lagos , Poluentes Químicos da Água/análise
12.
Chemosphere ; 281: 130977, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289625

RESUMO

Per-, Poly-fluoroalkyl substances (PFASs) accumulation in benthic environments is mainly determined by material mixing and represents a significant challenge to river remediation. However, less attention has been paid to the effects of sediment distribution on PFASs accumulation, and how PFASs influence microbial community coalescence and biogeochemical processes. In order to identify correlations between PFASs distribution and benthic microbial community functions, we conducted a field study and quantified the ecological constrains of material transportation on benthic microorganisms. Perfluorohexanoic acid (PFHxA) contributed most to the taxonomic heterogeneity of both archaeal (12.199%) and bacterial (13.675%) communities. Genera Methanoregula (R2 = 0.292) and Bacillus (R2 = 0.791) were identified as indicators that respond to PFASs. Phylogenetic null modeling indicated that deterministic processes (50.0-82.2%) dominated in spatial assembly of archaea, while stochasticity (94.4-97.8%) dominated in bacteria. Furthermore, spatial mixing of PFASs influenced broadly in nitrogen cycling of archaeal genomes, and phosphorus mineralization of bacterial genomes (p < 0.05). Overall, we quantified the effect of PFASs on community assembly and highlighted the constrains of PFASs influence on benthic geochemical potentials, which may provide new insights into riverine remediation.


Assuntos
Fluorocarbonos , Microbiota , Archaea/genética , Ecossistema , Fluorocarbonos/análise , Sedimentos Geológicos , Filogenia , Rios
13.
Environ Res ; 194: 110733, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33434608

RESUMO

Perfluoroalkyl acids (PFAAs) are ubiquitous in various environments. This has caused great public concern, particularly in the shallow freshwater lake region, where the lake, rivers, and estuaries form a highly interconnected continuum. However, little is known about the environmental behaviors of PFAAs in the continuum. For the first time, a high-resolution monitoring framework covering the river-estuary-lake continuum of Luoma Lake was built, and the concentrations, sources, and environmental fates of PFAAs were identified and analyzed. The results revealed that the total concentration of PFAAs was at a moderate level in the water and at a high level in the sediment compared to global levels respectively. Perfluorooctanesulfonate (PFOS) was the most abundant PFAA in the continuum. In particular, the ∑PFAA concentration in the particle phase was much higher than that in the sediment phase. Distinct spatial heterogeneities were observed in the behaviors of distribution and the multiphase fate of PFAAs in the continuum, mainly driven by the turbulent mixing during transport, dilution of lake water, and spatial differences of hydrodynamic features and sedimentary properties among the sub-regions. Interestingly, the pH of the sediment and water had significant effects on the water-sediment portioning of PFAAs in contrasting ways. Furthermore, based on the composition of the sediments, four possible migration paths for PFAAs were deduced and the main sources of PFAAs were identified as sewage, domestic, and industrial effluents using the positive matrix factorization model. During the human health assessment, no risk was found under the median exposure scenario; however, under the high exposure scenario, PFAAs posed uncertain risks to human health, which cannot be ignored. This study provides basic information for simulating the fate and transport of PFAAs in the continuum and is significant for developing cost-effective control and remediation strategies in the near future.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , China , Monitoramento Ambiental , Fluorocarbonos/análise , Humanos , Lagos , Medição de Risco , Rios , Poluentes Químicos da Água/análise
14.
J Hazard Mater ; 401: 123252, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32634663

RESUMO

Determination of the effects of Escherichia coli (E. coli) pollution on agricultural pond ecosystems with vegetation at different life stages is essential for the protection of ecological functions. However, no comprehensive study has yet shown the responses of epiphytic microbial communities to E. coli invasion during plant decay. Thus, this study was conducted to clarify variation in the decay of the following aquatic plants-Myriophyllum aquaticum, Nymphaea tetragona and Phragmites australis after E. coli pollution. Exogenous E. coli especially shifted the epiphytic microbial composition and distribution of P. australis. Stronger effects of E. coli on the archaeal community (edges/nodes = 0.818 < 1, modularity = 0.654; lower clustered structure, 0.389) were found than on the bacterial community (edges/nodes = 1.538 > 1, modularity = 1.291 > 0.654; higher clustered, 0.593). During plant decomposition, E. coli weakened methanogenesis by regulating the network of core genera Methanobacterium and Methanospirillum (spearman, P < 0.05), stimulated the accumulation of organic matters in water (P < 0.05). Similarly, nitrification and denitrification increased and decreased through network regulation in relative biomass of genera Devosia and Desulfovibrio (P < 0.05), respectively. The results provided theoretical supports for eutrophication management in pond ecosystems threatened by E. coli pollution.


Assuntos
Escherichia coli , Microbiota , Archaea , Escherichia coli/genética , Nutrientes , Plantas
15.
J Environ Manage ; 261: 110204, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148275

RESUMO

The effects of exogenous Escherichia coli on nitrogen cycling (N-cycling) in freshwater remains unclear. Thus, seven ecosystems, six with submerged plants-Potamogeton crispus (PC) and Myriophyllum aquaticum (MA)-and one with no plants were set up. Habitats were assessed before and after E. coli addition (107 colony-forming units/mL). E. coli colonization of freshwater ecosystems had significant effects on bacterial community structure in plant surface biofilms and surface sediments (ANOVA, P < 0.05). It reduced the relative abundance of nitrosification bacteria (-70.94 ± 26.17%) and nitrifiers (-47.86 ± 23.68%) in biofilms which lead to significant reduction of ammoxidation in water (P < 0.05). The N-cycling intensity from PC systems was affected more strongly by E. coli than were MA systems. Furthermore, the coupling coefficient of exogenous E. coli to indigenous N-cycling bacteria in sediments (6.061, average connectivity degree) was significantly weaker than that in biofilms (9.852). Additionally, at the genus level, E. coli were most-closely associated with N-cycling bacteria such as Prosthecobacter, Hydrogenophaga, and Bacillus in sediments and biofilms according to co-occurrence bacterial network (Spearman). E. coli directly changed their abundance, so that the variability of species composition of N-cycling bacterial taxa was triggered, as well. Overall, exogenous E. coli repressed ammoxidation, but promoted ammonification and denitrification. Our results provided new insights into how pathogens influence the nitrogen cycle in freshwater ecosystems.


Assuntos
Ecossistema , Escherichia coli , Bactérias , Nitrogênio , Ciclo do Nitrogênio
16.
Environ Pollut ; 252(Pt B): 992-1001, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31252138

RESUMO

Soluble reactive phosphorus (SRP) that is released from sediment plays an important role in contributing to a lake's eutrophication. Much of the work that has studied sediment release has been conducted in the submerged bottom sediment of lakes. Less attention has paid to the littoral zones near land boundaries where the hydrodynamic disturbance of drying/wetting cycles dominates. To date, the release mechanism under drying/wetting cycles has not been revealed quantitatively. In this study, we conducted a series of laboratory experiments to evaluate the effect of varied frequencies of drying/wetting cycles to the efflux of SRP from sediment. We tested SRP, Fe2+, pH, and redox condition (pE) in overlying water under three frequencies of 24, 9, and 2.77 day-1 (F1, F2, and F3, respectively). SRP concentrations of F1, F2, and F3 experimental conditions were 3.46, 1.73, and 1.38 times that of a static experimental condition, respectively, showing a significant difference (p < 0.05) among the conditions. The overlying water under drying/wetting cycles varied in weak-base and low-redox status, which facilitated ion release. The SRP concentration of the porewater varied with the different frequencies of drying/wetting cycles. These results suggested that the variation of SRP in the porewater was strongly correlated with SRP release (R2 = 0.809). Drying/wetting cycles enhanced the mobilization and release of SRP from the sediment to the overlying water through porewater exchange. The evaluation model emphasized that porewater exchange made the greatest contribution to SRP release and a higher frequency of drying/wetting cycles may have promoted this exchange of porewater between the sediment and overlying water, thus facilitating the release of SRP.


Assuntos
Sedimentos Geológicos/química , Hidrodinâmica , Lagos/química , Modelos Teóricos , Fósforo/análise , Poluentes Químicos da Água/análise , China , Eutrofização , Oxirredução , Solubilidade
17.
Water Sci Technol ; 69(4): 687-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24569265

RESUMO

For solving the multi-parameter identification problem of a river water quality model, analytical methods for solving a river water quality model and traditional optimization algorithms are very difficult to implement. A new parameter identification model based on a genetic algorithm (GA) coupled with finite difference method (FDM) was constructed for the determination of hydraulic and water quality parameters such as the longitudinal dispersion coefficient, the pollutant degradation coefficient, velocity, etc. In this model, GA is improved to promote convergence speed by adding the elite replacement operator after the mutation operator, and FDM is applied for unsteady flows. Moreover the influence of observation noise on identified parameters was discussed for the given model. The method was validated by two numerical cases (in steady and unsteady flows respectively) and one practical application. The computational results indicated that the model could give good identification precision results and showed good anti-noise abilities for water quality models when the noise level ≤10%.


Assuntos
Modelos Teóricos , Rios/química , Poluentes Químicos da Água/química , Poluição da Água/análise , Algoritmos , Monitoramento Ambiental/métodos , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA