Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Cell Pathol (Amst) ; 2022: 2371057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247875

RESUMO

Background: SLC2A3 is upregulated in various cancer types and promotes proliferation, invasion, and metabolism. However, its role in the prognosis and immune regulation of head and neck squamous cell carcinoma (HNSCC) is still obscure. This study is aimed at exploring the prognostic and immunotherapeutic potential of SLC2A3 in HNSCC. Methods: All data were downloaded from TCGA database and integrated via R software. SLC2A3 expression was evaluated using R software, TIMER, CPTAC, and HPA databases. The association between SLC2A3 expression and clinicopathologic characteristics was assessed by R software. The effect of SLC2A3 on survival was analyzed by R software and Kaplan-Meier Plotter. Genomic alterations in SLC2A3 were investigated using the cBioPortal database. Coexpression of SLC2A3 was studied using LinkedOmics and STRING, and enrichment analyses were performed with R software. The relationship between SLC2A3 expression and immune infiltration was determined using TIMER and TISIDB databases. Immune checkpoints and ESTIMATE score were analyzed via the SangerBox database. Results: SLC2A3 expression was upregulated in HNSCC tissues compared to normal tissues. It was significantly related to TNM stage, histological grade, and alcohol history. High SLC2A3 expression was associated with poor prognosis in HNSCC. Coexpression analysis indicated that SLC2A3 mostly participated in the HIF-1 signaling pathway and glycolysis. Furthermore, SLC2A3 expression strongly correlated with tumor-infiltrating lymphocytes in HNSCC. Conclusion: SLC2A3 could serve as a potential prognostic biomarker for tumor immune infiltration in HNSCC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
2.
In Vitro Cell Dev Biol Anim ; 58(4): 316-324, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35426067

RESUMO

Dental pulp stem cells (DPSCs) have multilineage differentiation potential and especially show a great foreground in bone regeneration engineering. The mechanism of osteogenic differentiation of DPSCs needs to be explored exactly. As a kind of endogenous and non-coding small RNAs, microRNAs (miRNAs) play an important role in many biological processes including osteogenic differentiation. However, the mechanism of miR-153-3p in osteogenic differentiation of DPSCs is still unknown. Core-binding factors-beta (CBFß) is a non-DNA-binding factor that combines with the runt-related transcription factor family transcription factors to mediate their DNA-binding affinities, and plays a critical role in regulating osteogenic differentiation. In this study, we explored the mechanisms of miR-153-3p and CBFß in DPSC osteogenesis. The expression of miR-153-3p and CBFß was tested under the osteogenic condition, and the influence led by changing the expression of miR-153-3p or CBFß had also been detected. A luciferase reporter assay confirmed that miR-153-3p directly targeted to CBFß. The osteogenic markers, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and bone morphogenetic protein 2 (BMP2), were tested in protein level or mRNA level. ALP and Alizarin red staining were used to detect the osteoblast activity and mineral deposition. In osteogenic condition, the expressions of CBFß and osteogenic markers were upregulated, whereas that of miR-153-3p was downregulated. miR-153-3p negatively regulated the osteogenic differentiation, and overexpression of CBFß could offset the negative effect of miR-153-3p. Our findings provided a novel strategy for DPSC application in treatment of bone deficiencies and facilitated bone regeneration.


Assuntos
Fenômenos Biológicos , MicroRNAs , RNA Longo não Codificante , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/genética , Células Cultivadas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...