Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 344: 140378, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806332

RESUMO

Hydrothermal carbonization of biogas slurry and animal manure into hydrochar could enhance waste recycling waste and minimize ammonia (NH3) volatilization from paddy fields. In this study, cattle manure-derived hydrochar prepared in the presence of Milli-Q water (CMWH) and biogas slurry (CMBSH), and biogas slurry-based hydrochar embedded with zeolite (ZHC) were applied to rice-paddy soil. The results demonstrated that CMBSH and ZHC treatments could significantly mitigate the cumulative NH3 volatilization and yield-scale NH3 volatilization by 27.9-45.2% and 28.5-45.4%, respectively, compared to the control group (without hydrochar addition), and significantly correlated with pH and ammonium-nitrogen (NH4+-N) concentration in floodwater. Nitrogen (N) loss via NH3 volatilization in the control group accounted for 24.9% of the applied N fertilizer, whereas CMBSH- and ZHC-amended treatments accounted for 13.6-17.9% of N in applied fertilizer. The reduced N loss improved soil N retention and availability for rice; consequently, grain N content significantly increased by 6.5-14.9% and N-use efficiency increased by 6.4-16.0% (P < 0.05), respectively. Based on linear fitting results, NH3 volatilization mitigation resulted from lower pH and NH4+-N concentration in floodwater that resulted from the acidic property and specific surface area of hydrochar treatments. Moreover, NH3-oxidizing archaea abundance in hydrochar-treated soil decreased by 40.9-46.9% in response to CMBSH and ZHC treatments, potentially suppressing NH4+-N transformation into nitrate and improving soil NH4+-N retention capacity. To date, this study applied biogas slurry-based hydrochar into paddy soil for the first time and demonstrated that ZHC significantly mitigated NH3 and increased N content. Overall, this study proposes an environmental-friendly strategy to recycle the wastes, biogas slurry, to the paddy fields to mitigate NH3 volatilization and increase grain yield of rice.


Assuntos
Amônia , Oryza , Bovinos , Animais , Amônia/química , Solo/química , Esterco/análise , Biocombustíveis/análise , Volatilização , Fertilizantes/análise , Carvão Vegetal/química , Nitrogênio/análise , Oryza/química , Grão Comestível/química
2.
Pest Manag Sci ; 78(8): 3654-3663, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35613133

RESUMO

BACKGROUND: Herbicide resistance in weeds and environmental pollution resulting from excessive application of chemical herbicides keeps increasing. Development of environment-friendly and effective weed management strategies are required for sustainable agricultural production. In this study we investigated the effects of duckweeds (Landoltia punctata (G. Meyer) Les & D. J. Crawford and Spirodela polyrhiza (Linnaeus) Schle iden) introduction on the weed community and rice growth in paddy fields. RESULTS: The study was conducted in the two rice-growing seasons (2018 and 2019) with three treatments: rice grown without duckweed introduction (CK), with L. punctata introduction (LP), and with S. polyrhiza introduction (SP). On average, LP and SP significantly reduced total weed density by more than 90% and 97%, respectively. Early in the rice-growing season, both duckweed species completely prevented weed growth. Further, both species significantly promoted rice plant growth in the advanced stages. SP significantly improved grain yield of rice by 23%. Light transmittance, temperature of the floodwater and soil, floodwater pH, and dissolved oxygen content significantly decreased following introduction of the duckweeds, indicating that the duckweeds introduction might inhibit weeds growth by altering environmental factors. CONCLUSION: This study provides a possible environment-friendly way to inhibit weed biomass in the paddy field by introducing duckweeds and interpreted the possible reasons of the impacts of duckweed on environmental variables. Weed control is beneficial for rice growth. Duckweed coverage might be limited in open fields and the associated practice requires additional investigation. © 2022 Society of Chemical Industry.


Assuntos
Araceae , Oryza , Agricultura/métodos , Plantas Daninhas , Controle de Plantas Daninhas/métodos
3.
Environ Pollut ; 287: 117562, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426395

RESUMO

Hydrochar (HC) serves as a promising adsorbent to remove the cadmium from aqueous solution due to porous structure. The chemical aging method is an efficient and easy-operated approach to improve the adsorption capacity of HC. In this study, four chemical aging hydrochars (CAHCs) were obtained by using nitric acid (HNO3) with mass fractions of 5% (N5-HC), 10% (N10-HC), and 15% (N15-HC) to age the pristine HC (N0-HC) and remove the Cd2+ from the aqueous solution. The results displayed that the N15-HC adsorption capacity was 19.99 mg g-1 (initial Cd2+ concentration was 50 mg L-1), which increased by 7.4 folds compared to N0-HC. After chemical aging, the specific surface area and oxygen-containing functional groups of CAHCs were increased, which contributed to combination with Cd2+ by physical adsorption and surface complexation. Moreover, ion exchange also occurred during the adsorption process of Cd2+. These findings have important implications for wastewater treatment to transform the forestry waste into a valuable adsorbent for Cd2+ removal from water.


Assuntos
Cádmio , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Água
4.
Chemosphere ; 277: 130233, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34384170

RESUMO

Hydrothermal carbonization (HTC) is known as a green biomass conversion technology. However, it often suffers from the issue of disposing hydrothermal carbonization aqueous products (HCAP). Based on the characterization and composition of acidic HCAP, a rice paddy soil column experiment was conducted to observe the effects of HCAP on ammonia (NH3) volatilization form paddy soil and rice yield. The experiment was designed with five treatments. HCAPs were produced at 220 °C and (SHC220-L) and 260 °C (SHC260-L) derived from poplar sawdust, HCAP produced at 220 °C (WHC220-L) and 260 °C (WHC260-L) derived from wheat straw, and a control group without HCAP application (termed CKU hereafter). The results showed that HCAP treatments increased the rice yield by 4.30%-26.0% compared to CKU. HACPs prepared at lower temperatures (SHC220-L and WHC220-L) mitigated the cumulative NH3 volatilization by 11.2% and 7.6%, respectively, and mitigated yield-scale NH3 volatilization (cumulative NH3 volatilization/total yield) by 14.2% âˆ¼ 22.4%. HCAP significantly improved the N use efficiency of rice. We found that the NH3 volatilization was related to NH4+-N concentration and pH of surface water, soil TOC and NH4+-N oxidation functional genes. This study implied that HCAP could be potentially used as a liquid fertilizer, which will be a potential substitute for chemical N fertilizers. There is still a long way before HCAP can be applied in full-scale for N fertilizer reduction and waste recycle.


Assuntos
Amônia , Oryza , Agricultura , Amônia/análise , Fertilizantes/análise , Nitrogênio/análise , Solo , Volatilização , Água
5.
Environ Pollut ; 287: 117340, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34023661

RESUMO

Biogas slurry (BS) and bio-waste hydrothermal carbonization aqueous phase (HP) are nutrient-rich wastewater. To prevent environment contamination, transforming BS and HP into synthetic fertilizers in the agricultural field can potentially realize resource utilization. We hypothesized that acidic HP could neutralize alkaline BS, adjusting floodwater pH from 6.88 to 8.00 and mitigating ammonia (NH3) volatilization from the paddy soil. In this soil column study, the mixture of BS and HP was applied to paddy soil to substitute 50%, 75%, and 100% to urea. With a low (L) or high (H) ratio of HP, treatments were labeled as BCL50, BCL75, BCL100, BCH50, BCH75, and BCH100. Results showed that microbial byproduct- and fulvic acid-like substance were the main components in BS and HP using 3D-EEM analysis, respectively. Co-application of BS and HP mitigated the NH3 volatilization by 4.2%-65.5% compared with CKU. BCL100 and BCH100 treatments significantly (P < 0.05) mitigated NH3 volatilization by 65.5% and 56.8%, which also significantly (P < 0.05) mitigated the yield-scale NH3 volatilization by 49.6% and 42.3%, compared with CKU. The low NH4+-N concentration and pH value in floodwater were the main reason explained the NH3 mitigation. Therefore, this study demonstrated that BS and HP co-application can substitute the urea as a valuable N fertilizer in a rational rate and meanwhile mitigate the NH3 volatilization. This study will provide new ideas for the utilization of BS and HP resources in the context of ammonia mitigation.


Assuntos
Fertilizantes , Oryza , Agricultura , Amônia/análise , Biocombustíveis , Fertilizantes/análise , Nitrogênio/análise , Solo , Ureia , Volatilização
6.
Front Plant Sci ; 12: 614613, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854517

RESUMO

Leaf ionome indicates plant phylogenetic evolution and responses to environmental stress, which is a critical influential factor to the structure of species populations in local edaphic sites. However, little is known about leaf ionomic responses of local plant species to natural edaphic mineral variations. In the present study, all plant species and soil samples from a total of 80 soil sites in Shiozuka Highland were collected for multi-elemental analysis. Ioniomic data of species were used for statistical analysis, representing 24 species and 10 families. Specific preferences to ionomic accumulation in plants were obviously affected by the phylogeny, whereas edaphic impacts were also strong but limited within the phylogenetic preset. Correlations among elements resulted from not only elemental synergy and competition but also the adaptive evolution to withstand environmental stresses. Furthermore, ionomic differences of plant families were mainly derived from non-essential elements. The majority of variations in leaf ionome is undoubtedly regulated by evolutionary factors, but externalities, especially environmental stresses also have an important regulating function for landscape formation, determining that the contributions of each factor to ionomic variations of plant species for adaptation to environmental stress provides a new insight for further research on ionomic responses of ecological speciation to environmental perturbations and their corresponding adaptive evolutions.

7.
Sci Total Environ ; 780: 146532, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773345

RESUMO

With the favorable microporous structure and excellent adsorption capacity, clay-hydrochar composites (CHCs) serve as promising materials to mitigate greenhouse gas emissions (GHG) from the paddy fields. Three clays were co-pyrolyzed with hydrochar derived from poplar sawdust to obtain CHCs, which were applied to the paddy fields to investigate the effects on methane (CH4) and nitrous oxide (N2O) emissions. Three CHCs were labeled as bentonite-hydrochar composite (BTHC), montmorillonite-hydrochar composite (MTHC), and kaolinite-hydrochar composite (KTHC), respectively. The effects of these three CHCs on GHG emissions were determined by monitoring the dynamic CH4 and N2O emissions in the paddy soil column ecosystem during the rice-growing season. The results showed that compared with the control group, three CHCs significantly mitigated CH4 and N2O emissions by 21.4%-47.5% and 5.2%-36.8%, respectively. Furthermore, the fluorescent components result displayed CHCs increased humic-like content by 29.62%-59.72%. A structural equation model was used to assess the hypothesis mitigation mechanism, which exemplified that GHG emissions negatively correlated with pmoA and nosZ genes, possibly resulting in the CH4 and N2O mitigation. Among the three CHCs, the KTHC amendment mitigated the CH4 and N2O emissions by 47.5% and 36.8%, respectively, which was superior to BTHC and MTHC. Hence, it was recommended for application to the field. Overall, this study demonstrates the mitigating effects of CHCs on GHG emissions for the first time, and the reduced CH4 and N2O emissions could contribute to increased soil C and N retention for better agricultural nutrients management.

8.
Bioresour Technol ; 320(Pt B): 124411, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33246237

RESUMO

Hydrochars-based dissolved organic matters (DOM) are easily available to organisms and thus have important influence on the biota once applying hydrochars as environment amendment. Thus, positive modifications on molecular composition of DOM is indispensable before hydrochars application. In this study, the impacts of microbial-aging by anaerobic fermentation on DOM of agro-waste-hydrochars was systematically assessed. Results revealed that microbial-aging caused lower DOM release but higher DOM molecular diversity. Moreover, microbial-aging resulted in the production of more biodegradable compounds, including lipids and proteins, and reduced the aromaticity of DOM. The highly oxygenated molecules (O/C > 0.6) were shifted into lower-order ones in the hydrochars-based DOM, suggesting the transformation of hydrophilic compounds into hydrophobic ones. Additionally, microbial-aging promoted the degradation of phenols by 99.0-98.9%, phenolic acids 37.8-73.5%, and polycyclic aromatic hydrocarbons by 83.4-90.4% in hydrochar-based DOM. Overall, this study demonstrates that microbial-aging changes the molecular characteristics of hydrochars-based DOM in a positive manner.


Assuntos
Ciclotrons , Espectrometria de Massas por Ionização por Electrospray , Análise de Fourier , Compostos Orgânicos
9.
J Hazard Mater ; 398: 122818, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32512435

RESUMO

Inhibiting reductive transformation of arsenic (As) in flooded paddy soils is fundamentally important for mitigating As transfer into the food chain. In this study, oxygen-nanobubble-loaded-zeolites (ZON) and -vermiculites (VON) were tested as a novel approach for supplying oxygen to paddy soils to inhibit As influx into rice. The dynamic physio- and bio-chemical variations in the rhizosphere and bulk soil were profiled in a rhizobox experiment. Upon adding ZON and VON, the redox potential and dissolved oxygen consistently increased throughout the cultivation period. The improved redox environment inhibited As(III) release into porewater and increased As(V) adsorbed on crystalline Fe (hydr)oxides, following the reduction of arsC and arrA gene abundances and enhancement of the aioA gene. Moreover, adding ZON and VON promoted root iron plaque formation, which increased As retention on iron plaque. Both ZON and VON treatments mitigated As translocation from soil to rice, meanwhile increasing root and shoot biomass. ZON was superior to VON in repressing As transfer and promoting rice growth due to its higher oxygen loading capacity. This study provides a novel and environment-friendly material to both mitigate the As translocation from paddy soil to rice and improve rice growth.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Minerais , Oxigênio , Solo , Poluentes do Solo/análise
10.
Sci Total Environ ; 718: 137301, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32105922

RESUMO

Clay-hydrochar composites (CHCs) are of great significance in ammonium (NH4+) adsorption and have the potential to be applied to paddy fields to prevent ammonia (NH3) volatilization. In this study, three CHCs were produced by infusing different clays to poplar-sawdust-derived hydrochar, including a bentonite hydrochar composite (BTHC), montmorillonite hydrochar composite (MTHC), and kaolinite hydrochar composite (KTHC). These three CHCs were applied to a paddy soil column system growing rice. The temporal variations in NH3 volatilization and NH4+ loss in floodwater were monitored after three fertilization dates. The results showed that among the three CHCs, only the BTHC significantly reduced cumulative NH3 volatilization (by 41.8%), compared to that of the unamended control (without addition of hydrochar or clay-hydrochar-composite). In the unamended control, NH3 volatilization loss accounted for 31.4% of the applied N fertilizer; with the BTHC amendment, NH3 volatilization loss accounted for 17.4% of the applied N fertilizer. The reduced N loss via the BTHC amendment resulted in an increased N supply and further improved the N use efficiency and yield by 37.36% and 18.8% compared to that of the control, respectively. The inhibited NH3 volatilization was mainly attributed to the increased soil NH4+ retention as a result of BTHC's larger pore volume and specific surface area. In addition, the BTHC treatment significantly reduced the abundance of archaeal amoA genes (AOA), which possibly inhibited nitrification and increased soil NH4+ retention. This study, for the first time, screened BTHC as an excellent material for mitigating NH3 volatilization from paddy fields. The reduced NH3 volatilization loss might contribute to increased soil N retention and plant N use efficiency.


Assuntos
Oryza , Solo , Amônia , Bentonita , Carvão Vegetal , Fertilizantes , Nitrogênio , Volatilização
11.
Sci Total Environ ; 717: 137127, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32084683

RESUMO

Hydrothermal carbonization represents a promising technique for transforming microalgae into the hydrochar with abundant phytoavailable nutrients. However, the effects of microalgae-derived hydrochars on the gaseous nitrogen (N) loss from agricultural field are still unclear. Chlorella vulgaris powder (CVP) and two Chlorella vulgaris-derived hydrochars that employ water (CVHW) or citrate acid solution (CVHCA) as the reaction medium were applied to a soil column system grown with rice. The temporal variations of nitrous oxide (N2O) emissions and ammonia (NH3) volatilization were monitored during the whole rice-growing season. Results showed that CVHW and CVHCA addition significantly increased the grain yield (by 13.5-26.8% and 10.5-23.4%) compared with control and CVP group, while concomitantly increasing the ammonia volatilization (by 53.8% and 72.9%) as well as N2O emissions (by 2.17- and 2.82-fold) from paddy soil compared to control. The microbial functional genes (AOA, AOB, nirk, nirS, nosZ) in soil indicated that CVHW and CVHCA treatment stimulated the nitrification and denitrification, and inhibited the N2O oxidation in soil. Notably, CVHW was recommended in the view of improving yield and controlling NH3 volatilization because no significant difference of the yield-scale NH3 volatilization was detected between control and CVHW treatment. This study for the first time uncovered that Chlorella vulgaris-derived hydrochars have positive effects on rice N utilization and growth but negative effects on the atmospheric environment.


Assuntos
Chlorella vulgaris , Microalgas , Oryza , Amônia , Fertilizantes , Gases , Nitrogênio , Óxido Nitroso , Solo , Microbiologia do Solo
12.
Chemosphere ; 245: 125558, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31855761

RESUMO

Hydrothermal carbonization (HTC) is a promising technique for treating sewage sludge. In this study, three sewage sludge-derived hydrochars produced with water (SSHW), 1 wt% magnesium citrate (SSHM) solution, and 1 wt% magnesium citrate mixed with 1 wt% sulfuric acid (SSHMS) solution were applied to columns of packed paddy soil. We evaluated the effects of these differently modified sewage sludge-hydrochars on ammonia volatilization, soil nitrogen (N) retention and rice growth. Results showed that compared to the control, SSHMS reduced the cumulative ammonia volatilization determined after three split application of N-fertilizer. SSHM and SSHMS both reduced the yield-scale ammonia volatilization by 20.3% and 41.2% respectively. Moreover, the addition of three sewage sludge-derived hydrochars increased soil ammonium-N retention after the first supplementary fertilization; however, after the second supplementary fertilization, only SSHMS addition significantly increased soil ammonium-N retention. Of the three hydrochars tested, SSHMS has the strongest effects on soil ammonium-N retention and inhibition of ammonium-N loss in floodwater. This was attributed to increased ammonium sorption driven by SSHMS's lower surface pH and porous diameter, larger adsorption porous volume and higher abundance of carboxyl functional groups. Additionally, the increased soil N retention increased grain N content and yield. Our results provide a novel method to valorize sewage sludge into a valuable fertilizer that if applied to paddy soil it can inhibit ammonia volatilization, N loss in floodwater, and promote N use efficiency by rice, with positive implications for sustainable rice production.


Assuntos
Amônia/análise , Carvão Vegetal/química , Fertilizantes/análise , Nitrogênio/análise , Esgotos/química , Poluentes do Solo/análise , Amônia/química , Grão Comestível/química , Oryza/química , Solo/química , Volatilização
13.
Plant Cell Environ ; 42(11): 3027-3043, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31283836

RESUMO

To elucidate the mechanism of adaptation of leguminous plants to iron (Fe)-deficient environment, comprehensive analyses of soybean (Glycine max) plants (sampled at anthesis) were conducted under Fe-sufficient control and Fe-deficient treatment using metabolomic and physiological approach. Our results show that soybeans grown under Fe-deficient conditions showed lower nitrogen (N) fixation efficiency; however, ureides increased in different tissues, indicating potential N-feedback inhibition. N assimilation was inhibited as observed in the repressed amino acids biosynthesis and reduced proteins in roots and nodules. In Fe-deficient leaves, many amino acids increased, accompanied by the reduction of malate, fumarate, succinate, and α-ketoglutarate, which implies the N reprogramming was stimulated by the anaplerotic pathway. Accordingly, many organic acids increased in roots and nodules; however, enzymes involved in the related metabolic pathway (e.g., Krebs cycle) showed opposite activity between roots and nodules, indicative of different mechanisms. Sugars increased or maintained at constant level in different tissues under Fe deficiency, which probably relates to oxidative stress, cell wall damage, and feedback regulation. Increased ascorbate, nicotinate, raffinose, galactinol, and proline in different tissues possibly helped resist the oxidative stress induced by Fe deficiency. Overall, Fe deficiency induced the coordinated metabolic reprogramming in different tissues of symbiotic soybean plants.


Assuntos
Glycine max/metabolismo , Ferro/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Aminoácidos/biossíntese , Compostos de Amônio/metabolismo , Cromatografia Gasosa , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Espectrometria de Massas , Metaboloma/genética , Metaboloma/fisiologia , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Nitrogenase/metabolismo , Folhas de Planta/química , Folhas de Planta/enzimologia , Raízes de Plantas/química , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/química , Nódulos Radiculares de Plantas/enzimologia , Glycine max/química , Açúcares/metabolismo , Simbiose
14.
J Agric Food Chem ; 67(1): 32-42, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525606

RESUMO

We tested whether introducing an arbuscular mycorrhizal fungi (AMF)-host plant with a reduced P application rate could maintain soybean seeds' nutrient quality. The dynamic variation of 14 nutrients was analyzed in source and sink organs during the seed-filling stage. The AMF-host and non-AMF-host plants, sunflower and mustard, were grown as preceding crops (PCs). Soybeans, the succeeding crops, were planted with three different phosphorus levels, namely, 0, 50, and 150 kg P2O5 ha-1. The results showed that the AMF-host PC with a reduced P application rate maintained the seed's yield and nutrients quality. During the seed-filling stage, the AMF-host PC with a reduced P application rate increased the uptake of most nutrients compared to the non-AMF-host PC, and improved the remobilization efficiency of all nutrients except Mn, Fe, and Se, compared to the optimal P application rate. These results could help improve the utilization efficiency of P fertilizers and protect soybeans' nutritional value.


Assuntos
Produção Agrícola/métodos , Helianthus/microbiologia , Micorrizas/fisiologia , Fósforo/análise , Sementes/química , Fertilizantes/análise , Fungos/fisiologia , Helianthus/crescimento & desenvolvimento , Mostardeira/crescimento & desenvolvimento , Valor Nutritivo , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Controle de Qualidade , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia , Glycine max/química , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo
15.
Sci Rep ; 7(1): 15706, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146988

RESUMO

Introducing frogs into paddy fields can control pests and diseases, and organic farming can improve soil fertility and rice growth. The aim of this 2-year field study was compare the yield and elemental composition of rice between an organic farming system including frogs (ORF) and a conventional rice culture system (CR). The grain yields were almost the same in the ORF system and the CR system. The ORF significantly increased the contents of phosphorus (P), ion (Fe), zinc (Zn), molybdenum (Mo) and selenium (Se) in rice grain at one or both years. However, the ORF system decreased the calcium (Ca) content in grice grains, and increased the concentration of cadmium, which is potentially toxic. A principal components analysis showed the main impacts of ORF agro-ecosystem on the rice grain ionome was to increase the concentration of P and trace metal(loid)s. The results showed that the ORF system is an ecologically, friendly strategy to avoid excessive use of chemical fertilizers, herbicides and pesticides without decreasing yields, and to improve the nutritional status of rice by increasing the micronutrient contents. The potential risks of increasing Cd contents in rice grain should be addressed if this cultivation pattern is used in the long term.


Assuntos
Agricultura/métodos , Anuros/fisiologia , Oryza/química , Oligoelementos/análise , Animais , Grão Comestível/metabolismo , Fertilizantes/análise , Herbicidas/toxicidade , Íons , Nitrogênio/análise , Nutrientes , Oryza/efeitos dos fármacos , Praguicidas/toxicidade , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Solo
16.
J Agric Food Chem ; 65(15): 3085-3095, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28368588

RESUMO

To characterize the dynamic mobilization of heavy metals (HM) in a crop-soil system affected by cattle manure (CM) application, soybean [Glycine max L. Merr. cv. Toyoharuka] crops were exposed in a chronological pot experiment to three CM application rates and sampled at two vegetative stages and two reproductive stages. A sequential extraction procedure for metal fractionation, soil pH, microbial activity, and plant HM uptake was determined. In non-rhizopshere soil, with CM application a liming effect was detected, and increased microbial activity was detected at the reproductive stage. CM application shifted Cd from available state to oxide-bound pool in non-rhizosphere soil; however, shifts in Cd from an oxide-bound pool to the available state were observed in rhizosphere soil. CM application stabilized the available Zn and Pb to oxide-bound Zn and organic-bound Pb in both non-rhizosphere and rhizosphere soils, and the stabilizing degree increased with higher CM application rates. The promoted Zn immobilization in the rhizosphere was due to the liming effects induced by added CM that counteracted the root-induced acidification. On the basis of a stepwise multiple regression analysis, the shift of Cd and Pb fractionation was mainly related to microbial activity. Adding manure inhibited Zn and Pb uptake but promoted Cd uptake by soybean, and a greater influence was detected at the reproductive stage, at which CM application increased the root Cd-absorbing power but did not significantly affect the Zn- and Pb-absorbing powers. In an agricultural context, long-term CM application, even at the recommended rate of 10.13 Mg ha-1, may cause a soybean Zn deficiency and high Pb accumulation in Haplic Fluvisols, although CM is often considered as an environmentally friendly fertilizer.


Assuntos
Glycine max/metabolismo , Esterco/análise , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Agricultura , Animais , Bovinos , Fertilizantes/análise , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rizosfera , Solo/química , Poluentes do Solo/análise , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia
17.
J Agric Food Chem ; 64(43): 8084-8094, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27726362

RESUMO

In this study, we determined the capacity of soybean (Glycine max L. Merr. cv. Hoyoharuka) and sorghum (Sorghum bicolor L. Moench. cv. Hybrid Sorgo) to utilize different forms of nitrogen (N) in a rhizobox system. Seedlings were grown for 35 days without N or with 130 mg N kg-1 soil as ammonium sulfate or farmyard cattle manure. The soil fractions at different distances from the root were sliced millimeter by millimeter in the rhizobox system. We assessed the distribution of different forms of N and microbial metabolism in different soil fractions in the rhizosphere. There are no treatment-dependent changes in biomass production in the roots and shoots of soybeans, however, the ammonium and manure treatment yielded 1.30 and 1.40 times higher shoot biomass of sorghum than the control. Moreover, the depletion of inorganic N and total amino acids (TAA) in the rhizosphere was largely undetectable at various distances from the soybean roots regardless of the treatments employed. The addition of ammonium sulfate resulted in a decrease in the nitrate concentration gradient as the distance decreased from the sorghum roots. The addition of manure to the soil increased the N content in the sorghum shoots, 1.57 times higher than the control; this increase was negatively correlated with the concentrations of TAA in the soil of the root compartment. In addition, the application of manure simultaneously induced TAA depletion (i.e., the TAA concentration in root compartment was 1.48 times higher than that in bulk soil) and greater microbial activity and diversity in the sorghum rhizosphere, where higher microbial consumption of asparagine, glutamic acid, and phenylalanine were also observed near the roots. Our results are first to present the evidence that sorghum may possess a high capacity for taking up amino acids as a consequence of organic matter application, and microbial metabolism.


Assuntos
Glycine max/crescimento & desenvolvimento , Esterco , Nitrogênio/metabolismo , Rizosfera , Sorghum/crescimento & desenvolvimento , Aminoácidos/análise , Aminoácidos/metabolismo , Sulfato de Amônio , Animais , Bovinos , Fertilizantes , Japão , Consórcios Microbianos/fisiologia , Nitrogênio/análise , Sorghum/metabolismo , Glycine max/metabolismo
18.
J Agric Food Chem ; 63(8): 2355-63, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25660261

RESUMO

Aiming at clarifying the interactions between Cs, Sr, and other mineral elements in the genus Amaranthus, this study adopted 33 different varieties of Amaranthus and investigated the concentrations of 23 mineral elements in shoots grown in the fields of Iino in Fukushima prefecture. Significant varietal effects were detected for all elements except Se, and degree of interspecies variation was highly element dependent. Among 23 elements, amaranths were less sensitive to the accumulation of Cs and Sr than most other mineral elements to the species level. There are six elements showing significant correlation with Cs, positive correlations between As, Rb, Al, Fe, Ni, and Cs, and negative correlation between Ba and Cs. Significant correlations between Ca, Mg, Mn, Zn, B, Ba, Cd, and Sr were detected, and all of the coefficients were positive. Cs and Sr did not present significant correlation, but they were both significantly correlated with Ba. By principal component analysis (PCA), the first and second principal components (PC1 and PC2) accounted for 23.2 and 20.3% of the total variance and associated with Cs and Sr, respectively. Both of the two species took up more Cs by promoting the influx of elements positively correlated with Cs into shoot, but at the same time, Amaranthus hypochondriacus (L.) Mapes 847 decreased the K and Ba uptake and Amaranthus powellii (S. Wats) subsp. Powellii inhibited the accumulation of Rb, Sr, and significantly correlated elements of Sr in shoot. This study is the first to pave the way for comprehension on ionome in amaranth shoot at the variety level. The results of this research provide the ionomic basis for implementing countermeasures in the field against the translocation of Cs (and potentially Sr) toward crops and food.


Assuntos
Amaranthus/química , Amaranthus/metabolismo , Césio/metabolismo , Estrôncio/metabolismo , Oligoelementos/metabolismo , Amaranthus/crescimento & desenvolvimento , Césio/análise , Brotos de Planta/química , Brotos de Planta/metabolismo , Estrôncio/análise , Oligoelementos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...