Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12816, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140579

RESUMO

Pollen and molds are environmental allergens that are affected by climate change. As pollen and molds exhibit geographical variations, we sought to understand the impact of climate change (temperature, carbon dioxide (CO2), precipitation, smoke exposure) on common pollen and molds in the San Francisco Bay Area, one of the largest urban areas in the United States. When using time-series regression models between 2002 and 2019, the annual average number of weeks with pollen concentrations higher than zero increased over time. For tree pollens, the average increase in this duration was 0.47 weeks and 0.51 weeks for mold spores. Associations between mold, pollen and meteorological data (e.g., precipitation, temperature, atmospheric CO2, and area covered by wildfire smoke) were analyzed using the autoregressive integrated moving average model. We found that peak concentrations of weed and tree pollens were positively associated with temperature (p < 0.05 at lag 0-1, 0-4, and 0-12 weeks) and precipitation (p < 0.05 at lag 0-4, 0-12, and 0-24 weeks) changes, respectively. We did not find clear associations between pollen concentrations and CO2 levels or wildfire smoke exposure. This study's findings suggest that spore and pollen activities are related to changes in observed climate change variables.


Assuntos
Mudança Climática , Fungos/fisiologia , Pólen/fisiologia , Alérgenos/efeitos adversos , Intervalos de Confiança , Análise Multivariada , Estações do Ano , Esporos Fúngicos/fisiologia
2.
Nat Commun ; 11(1): 4933, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004787

RESUMO

The influence of seasons on biological processes is poorly understood. In order to identify biological seasonal patterns based on diverse molecular data, rather than calendar dates, we performed a deep longitudinal multiomics profiling of 105 individuals over 4 years. Here, we report more than 1000 seasonal variations in omics analytes and clinical measures. The different molecules group into two major seasonal patterns which correlate with peaks in late spring and late fall/early winter in California. The two patterns are enriched for molecules involved in human biological processes such as inflammation, immunity, cardiovascular health, as well as neurological and psychiatric conditions. Lastly, we identify molecules and microbes that demonstrate different seasonal patterns in insulin sensitive and insulin resistant individuals. The results of our study have important implications in healthcare and highlight the value of considering seasonality when assessing population wide health risk and management.


Assuntos
Exposição Ambiental , Resistência à Insulina/fisiologia , Redes e Vias Metabólicas/fisiologia , Microbiota/fisiologia , Estações do Ano , Adulto , Idoso , Glicemia/análise , Glicemia/metabolismo , California , Análise por Conglomerados , Feminino , Nível de Saúde , Humanos , Insulina/metabolismo , Estudos Longitudinais , Masculino , Metabolômica , Pessoa de Meia-Idade , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...