Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(15): 9347-9356, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885073

RESUMO

Manipulating the charge carrier transport in photoactive materials is a big challenge toward high efficiency solar water splitting. Herein, we designed a hierarchical ZnxCd1-xS architecture for tuning the interfacial charge transfer kinetics. The in situ growth of ZnxCd1-xS nanoflakes on ZnO backbones provided low interfacial resistance for charge separation. With this special configuration, the optimized Zn0.33Cd0.67S photoanode achieved significantly enhanced performance with a photocurrent density of 10.67 mA cm-2 at 1.23 V versus RHE under AM1.5G solar light irradiation, which is about 14.1 and 2.5 times higher than that of the pristine ZnO and CdS nanoparticle decorated ZnO photoanodes, respectively. After coating a thin SiO2 layer, the photostability of the hierarchical Zn0.33Cd0.67S photoanode is greatly enhanced with 92.33% of the initial value retained under 3600 s continuous light illumination. The prominent PEC activity of the hierarchical ZnxCd1-xS nanorod arrays can be ascribed to an enhanced charge transfer rate aroused by the binder-free interfacial heterojunction, and the improved reaction kinetics at the electrode-electrolyte interface, which is evidenced by electrochemically active surface area measurements and intensity modulated photocurrent spectroscopy analysis. This interfacial heterojunction strategy provides a promising pathway to prepare high performance photoelectrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...