Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(25): e2309172, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38391035

RESUMO

X-ray circular dichroism, arising from the contrast in X-ray absorption between opposite photon helicities, serves as a spectroscopic tool to measure the magnetization of ferromagnetic materials and identify the handedness of chiral crystals. Antiferromagnets with crystallographic chirality typically lack X-ray magnetic circular dichroism because of time-reversal symmetry, yet exhibit weak X-ray natural circular dichroism. Here, the observation of giant natural circular dichroism in the Ni L3-edge X-ray absorption of Ni3TeO6 is reported, a polar and chiral antiferromagnet with effective time-reversal symmetry. To unravel this intriguing phenomenon, a phenomenological model is proposed that classifies the movement of photons in a chiral crystal within the same symmetry class as that of a magnetic field. The coupling of X-ray polarization with the induced magnetization yields giant X-ray natural circular dichroism, revealing typical ferromagnetic behaviors allowed by the symmetry in an antiferromagnet, i.e., the altermagnetism of Ni3TeO6. The findings provide evidence for the interplay between magnetism and crystal chirality in natural optical activity. Additionally, the first example of a new class of magnetic materials exhibiting circular dichroism is established with time-reversal symmetry.

2.
Sci Rep ; 7(1): 16579, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29185485

RESUMO

Secondary batteries are important energy storage devices for a mobile equipment, an electric car, and a large-scale energy storage. Nevertheless, variation of the local electronic state of the battery materials in the charge (or oxidization) process are still unclear. Here, we investigated the local electronic state of cobalt-hexacyanoferrate (Na x Co[Fe(CN)6]0.9), by means of resonant inelastic X-ray scattering (RIXS) with high energy resolution (~100 meV). The L-edge RIXS is one of the most powerful spectroscopic technique with element- and valence-selectivity. We found that the local electronic state around Co2+ in the partially-charged Na1.1Co2+0.5Co3+0.5[Fe2+(CN)6]0.9 film (x = 1.1) is the same as that of the discharged Na1.6Co2+[Fe2+(CN)6]0.9 film (x = 1.6) within the energy resolution, indicating that the local electronic state around Co2+ is invariant against the partial oxidization. In addition, the local electronic state around the oxidized Co3+ is essentially the same as that of the fully-charged film Co3+[Fe2+(CN)6]0.3[Fe3+(CN)6]0.6 (x = 0.0) film. Such a strong localization of the oxidized Co3+ state is advantageous for the reversibility of the redox process, since the localization reduces extra reaction within the materials and resultant deterioration.

3.
Inorg Chem ; 53(9): 4284-6, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24738605

RESUMO

The selective insertion of CO and CO2 into the C-O and O-H bonds of alcohols by the Se-Ru-CO hydride clusters [(µ-H)Ru4(CO)10Se2](-) (1) and [(µ3-H)Ru5(CO)14Se](-) (2) was demonstrated by a cooperative effect of the protonic hydride, the electron-rich Ru atom, and the electronegative Se atom as well as the symmetry of the clusters. These reactions generated the first examples of Se-containing ruthenium carboxylate and alkylcarbonate clusters [{(µ-H)Ru4(CO)10Se2}2{Ru2(CO)4(µ-η(1):η(1)-OOCR)}](3-) (R = Me, 3; Et, 4) and [{(µ-H)Ru4(CO)10Se2}2{Ru2(CO)4(µ-η(1):η(1)-OOCOR)}](3-) (R = Me, 5; Et, 6), respectively. These results disclosed herein provide a new avenue for the capture and storage of CO and CO2 and useful synthetic routes to novel RCOO(-)- and ROCOO(-)-bridged ruthenium selenide clusters.

4.
Chem Asian J ; 8(5): 963-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23610078

RESUMO

The reactions of E powder (E=S, Se) with a mixture of Cr(CO)6 and Mn2(CO)10 in concentrated solutions of KOH/MeOH produced two new mixed Cr-Mn-carbonyl clusters, [E2CrMn2(CO)9](2-) (E=S, 1; Se, 2). Clusters 1 and 2 were isostructural with one another and each displayed a trigonal-bipyramidal structure, with the CrMn2 triangle axially capped by two µ3-E atoms. The analogous telluride cluster, [Te2CrMn2(CO)9](2-) (3), was obtained from the ring-closure of Te2Mn2 ring complex [Te2Mn2Cr2(CO)18](2-) (4). Upon bubbling with CO, clusters 2 and 3 were readily converted into square-pyramidal clusters, [E2CrMn2(CO)10](2-) (E=Se, 5; Te, 6), accompanied with the cleavage of one Cr-Mn bond. According to SQUID analysis, cluster 6 was paramagnetic, with S=1 at room temperature; however, the Se analogue (5) was spectroscopically proposed to be diamagnetic, as verified by TD-DFT calculations. Cluster 6 could be further carbonylated, with cleavage of the Mn-Mn bond to produce a new arachno-cluster, [Te2CrMn2(CO)11](2-) (7). The formation and structural isomers, as well as electrochemistry and UV/Vis absorption, of these clusters were also elucidated by DFT calculations.


Assuntos
Monóxido de Carbono/química , Calcogênios/química , Cromo/química , Manganês/química , Teoria Quântica , Técnicas Eletroquímicas , Modelos Moleculares , Estrutura Molecular , Espectrofotometria Ultravioleta
5.
Inorg Chem ; 50(2): 565-75, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21142206

RESUMO

The trichromium-lead complex [Pb{Cr(CO)5}3](2-) (1) was isolated from the reaction of PbCl2 and Cr(CO)6 in a KOH/MeOH solution, and the new mixed chromium-iron-lead complex [Pb{Cr(CO)5}{Fe(CO)4}2](2-) (3) was synthesized from the reaction of PbCl2 and Cr(CO)6 in a KOH/MeOH solution followed by the addition of Fe(CO)5. X-ray crystallography showed that 3 consisted of a central Pb atom bound in a trigonal-planar environment to two Fe(CO)4 and one Cr(CO)5 fragments. When complex 1 reacted with 1.5 equiv of Mn(CO)5Br, the Cr(CO)4-bridged dimeric lead-chromium carbonyl complex [Pb2Br2Cr4(CO)18](2-) (4) was produced. However, a similar reaction of 3 or the isostructural triiron-lead complex [Pb{Fe(CO)4}3](2-) (2) with Mn(CO)5Br in MeCN led to the formation of the Fe3Pb2-based trigonal-bipyramidal complexes [Fe3(CO)9{PbCr(CO)5}2](2-) (6) and [Fe3(CO)9{PbFe(CO)4}2](2-) (5), respectively. On the other hand, the Ru3Pb2-based trigonal-bipyramidal complex [Ru3(CO)9{PbCr(CO)5}2](2-) (7) was obtained directly from the reaction of PbCl2, Cr(CO)6, and Ru3(CO)12 in a KOH/MeOH solution. X-ray crystallography showed that 5 and 6 each had an Fe3Pb2 trigonal-bipyramidal core geometry, with three Fe(CO)3 groups occupying the equatorial positions and two PbFe(CO)4 or PbCr(CO)5 units in the axial positions, while 7 displayed a Ru3Pb2 trigonal-bipyramidal geometry with three equatorial Ru(CO)3 groups and two axial PbCr(CO)5 units. The complexes 3-7 were characterized spectroscopically, and their nature, formation, and electrochemistry were further examined by molecular orbital calculations at the B3LYP level of density functional theory.

6.
Dalton Trans ; 39(6): 1492-503, 2010 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-20104310

RESUMO

When [TeRu(5)(CO)(14)](2-) () was treated with 1 equiv. of CuX (X = Cl, Br, I) in THF, mono-CuX-TeRu(5) clusters [TeRu(5)(CO)(14)CuX](2-) (X = Cl, ; Br, ; I, ) were obtained. Clusters consist of an octahedral TeRu(5) core, in which one triangular Ru(3) plane is capped by a mu(3)-CuX fragment. For CuX (X = Cl, Br), the reaction of complex with 2 equiv. of CuX in THF at room temperature formed Cu(4)X(2)-linked di-TeRu(5) clusters [{TeRu(5)(CO)(14)}(2)Cu(4)X(2)](2-) (X = Cl, ; Br, ), while the same reaction in MeCN at -35 degrees C produced bis-CuX-TeRu(5) complexes [TeRu(5)(CO)(14)(CuX)(2)](2-) (X = Cl, ; Br, ). X-Ray analysis showed that displays a TeRu(5) core with two adjacent Ru(3) triangles each capped by a mu(3)-CuBr ligand while has two TeRu(5) cores that are linked by a mu(6)-Cu(4)Br(2) moiety. Clusters and underwent coupling reactions in THF to yield clusters and , and easily transformed to bis-CuX-Te(2)Ru(4) clusters [Te(2)Ru(4)(CO)(10)(CuX)(2)](2-) (X = Cl, ; X = Br, ) in MeCN. On the other hand, the reaction of with 2 equiv. of CuI in THF directly produced the bis-CuI-Te(2)Ru(4) cluster [Te(2)Ru(4)(CO)(10)(CuI)(2)](2-) (). The nature, stability, stepwise cluster transformation, and electrochemistry of these CuX-incorporated TeRu(5)- and Te(2)Ru(4)-based complexes are discussed systematically. In particular, the effects of CuX and the metal cores (TeRu(5)vs. Te(2)Ru(4)) on the resultant Te-Ru-Cu clusters are further elucidated by molecular orbital calculations at the B3LYP level of the density functional theory.

7.
J Am Chem Soc ; 130(43): 14114-6, 2008 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-18828634

RESUMO

The unprecedented ternary Te-Fe-Cu chain polymers [{Et4N}{TeFe3(CO)9Cu}]infinity and [{TeFe3(CO)9Cu2}(mu-4,4'-dipyridyl)1.5]infinity were prepared from the self-assembly of [Et4N]2[TeFe3(CO)9] with [Cu(MeCN)4][BF4] in THF or in the presence of 4,4'-dipyridyl in THF. These two chain polymers, which can also be constructed from the precursor complex TeFe3(CO)9Cu2(MeCN)2, show semiconducting behaviors with low band gaps of 0.59 and 0.41 eV, respectively. In addition, their conductivity and the effect of the bridging ligand are further elucidated by theoretical calculations.


Assuntos
Cobre/química , Ferro/química , Compostos Organometálicos/química , Polímeros/química , Semicondutores , Telúrio/química , Simulação por Computador , Cristalografia por Raios X , Modelos Químicos , Modelos Moleculares , Estrutura Molecular
8.
Inorg Chem ; 47(23): 11018-31, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19228023

RESUMO

A new family of CuX-, Cu(2)X(2)-, and Cu(4)X(2)-incorporated mono- or di-SeFe(3)-based carbonyl clusters were constructed and structurally characterized. When the selenium-capped triiron carbonyl cluster [Et(4)N](2)[SeFe(3)(CO)(9)] was treated with 1-3 equiv of CuX in tetrahydrofuran (THF) at low or room temperatures, CuX-incorporated SeFe(3) complexes [Et(4)N](2)[SeFe(3)(CO)(9)CuX] (X = Cl, [Et(4)N](2)[1a]; Br, [Et(4)N](2)[1b]; I, [Et(4)N](2)[1c]), Cu(2)X(2)-incorporated SeFe(3) clusters [Et(4)N](2)[SeFe(3)(CO)(9)Cu(2)X(2)] (X = Cl, [Et(4)N](2)[2a]; Br, [Et(4)N](2)[2b]), and Cu(4)X(2)-linked di-SeFe(3) clusters [Et(4)N](2)[{SeFe(3)(CO)(9)}(2)Cu(4)X(2)] (X = Cl, [Et(4)N](2)[3a]; Br, [PPh(4)](2)[3b]) were obtained, respectively, in good yields. SeFe(3)CuX complexes 1a and 1b were found to undergo cluster expansion to form SeFe(3)Cu(2)X(2) complexes 2a and 2b, respectively, upon the addition of 1 equiv of CuX (X = Cl, Br). Furthermore, complexes 2a and 2b can expand further to form Cu(4)X(2)-linked di-SeFe(3) clusters 3a and 3b, upon treatment with 1 equiv of CuX (X = Cl, Br). [Et(4)N](4)[{SeFe(3)(CO)(9)(CuCl)(2)}(2)] ([Et(4)N](4)[4a]) was produced when the reaction of [Et(4)N](2)[SeFe(3)(CO)(9)] with 2 equiv of CuCl was conducted in THF at 40 degrees C. The Cu(2)Cl(2)-linked di-SeFe(3)CuCl cluster 4a is a dimerization product derived from complex 2a. Further, it is found that complex 4a can convert to the Cu(4)Cl(2)-linked di-SeFe(3) cluster 3a upon treatment with CuCl. The nature, formation, stepwise cluster expansion, and electrochemical properties of these CuX-, Cu(2)X(2)-, and Cu(4)X(2)-incorporated mono- or di-SeFe(3)-based clusters are elucidated in detail by molecular calculations at the B3LYP level of the density functional theory in terms of the effects of selenium, iron, copper halides, and the size of the metal skeleton.

9.
Chemistry ; 13(23): 6605-16, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17508380

RESUMO

A new series of Te-Ru-Cu carbonyl complexes was prepared by the reaction of K(2)TeO(3) with [Ru(3)(CO)(12)] in MeOH followed by treatment with PPh(4)X (X=Br, Cl) and [Cu(MeCN)(4)]BF(4) or CuX (X=Br, Cl) in MeCN. When the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was first treated with PPh(4)X followed by the addition of [Cu(MeCN)(4)]BF(4), doubly CuX-bridged Te(2)Ru(4)-based octahedral clusters [PPh(4)](2)[Te(2)Ru(4)(CO)(10)Cu(2)X(2)] (X=Br, [PPh(4)](2)[1]; X=Cl, [PPh(4)](2)[2]) were obtained. When the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was treated with PPh(4)X (X=Br, Cl) followed by the addition of CuX (X=Br, Cl), three different types of CuX-bridged Te-Ru carbonyl clusters were obtained. While the addition of PPh(4)Br or PPh(4)Cl followed by CuBr produced the doubly CuBr-bridged cluster 1, the addition of PPh(4)Cl followed by CuCl led to the formation of the Cu(4)Cl(2)-bridged bis-TeRu(5)-based octahedral cluster compound [PPh(4)](2)[{TeRu(5)(CO)(14)}(2)Cu(4)Cl(2)] ([PPh(4)](2)[3]). On the other hand, when the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was treated with PPh(4)Br followed by the addition of CuCl, the Cu(Br)CuCl-bridged Te(2)Ru(4)-based octahedral cluster chain polymer {[PPh(4)](2)(Te(2)Ru(4)(CO)(10)Cu(4)Br(2)Cl(2)).THF}(infinity) ({[PPh(4)](2)[4].THF}(infinity)) was produced. The chain polymer {[PPh(4)](2)[4].THF}(infinity) is the first ternary Te-Ru-Cu cluster and shows semiconducting behavior with a small energy gap of about 0.37 eV. It can be rationalized as resulting from aggregation of doubly CuX-bridged clusters 1 and 2 with two equivalents of CuCl or CuBr, respectively. The nature of clusters 1-4 and the formation and semiconducting properties of the polymer of 4 were further examined by molecular orbital calculations at the B3LYP level of density functional theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...