Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34685173

RESUMO

A novel MnO2/graphene/Ni foam electrode was fabricated via the impregnation and electrochemical deposition technique with Ni foams serving as substrates and graphene serving as a buffer layer for the enhanced conductivity of MnO2. The samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Compared with other methods, our strategy avoids using surfactants and high-temperature treatments. The electrodes exhibited excellent electrochemical performance, high capabilities, and a long cycle life. Various electrochemical properties were systematically studied using cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the specific capacitance of the MnO2/graphene/Ni composite prepared at 1 mA cm-2 of electrodeposition could achieve a scan rate of 10 mV s-1 at 292.8 F g-1, which confirmed that the graphene layer could remarkably improve electron transfer at the electrolyte-electrode interface. The capacitance retention was about 90% after 5000 cycles. Additionally, a MnO2/graphene//graphene asymmetric supercapacitor was assembled and it exhibited a high-energy density of 91 Wh kg-1 as well as had an excellent power density of 400 W kg-1 at 1 A g-1. It is speculated that the strong adhesion between the graphene and MnO2 can provide a compact structure to enhance the mechanical stability, which can be applied as a new method for energy storage devices.

2.
Nucleic Acids Res ; 47(D1): D181-D187, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357353

RESUMO

PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs that guard animal genomes against mutation by silencing transposons. In addition, recent studies have reported that piRNAs silence various endogenous genes. Tens of thousands of distinct piRNAs made in animals do not pair well to transposons and currently the functions and targets of piRNAs are largely unexplored. piRTarBase provides a user-friendly interface to access both predicted and experimentally identified piRNA targeting sites in Caenorhabditis elegans. The user can input genes of interest and retrieve a list of piRNA targeting sites on the input genes. Alternatively, the user can input a piRNA and retrieve a list of its mRNA targets. Additionally, piRTarBase integrates published mRNA and small RNA sequencing data, which will help users identify biologically relevant targeting events. Importantly, our analyses suggest that the piRNA sites found by both predictive and experimental approaches are more likely to exhibit silencing effects on their targets than each method alone. Taken together, piRTarBase offers an integrative platform that will help users to identify functional piRNA target sites by evaluating various information. piRTarBase is freely available for academic use at http://cosbi6.ee.ncku.edu.tw/piRTarBase/.


Assuntos
Sítios de Ligação , Bases de Dados Genéticas , Regulação da Expressão Gênica , Inativação Gênica , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Software , Navegador , Fluxo de Trabalho
3.
Database (Oxford) ; 20182018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30371756

RESUMO

Post-translational modifications of histones (e.g. acetylation, methylation, phosphorylation and ubiquitination) play crucial roles in regulating gene expression by altering chromatin structures and creating docking sites for histone/chromatin regulators. However, the combination patterns of histone modifications, regulatory proteins and their corresponding target genes remain incompletely understood. Therefore, it is advantageous to have a tool for the enrichment/depletion analysis of histone modifications and histone/chromatin regulators from a gene list. Many ChIP-chip/ChIP-seq datasets of histone modifications and histone/chromatin regulators in yeast can be found in the literature. Knowing the needs and having the data motivate us to develop a web tool, called Yeast Histone Modifications Identifier (YHMI), which can identify the enriched/depleted histone modifications and the enriched histone/chromatin regulators from a list of yeast genes. Both tables and figures are provided to visualize the identification results. Finally, the high-quality and biological insight of the identification results are demonstrated by two case studies. We believe that YHMI is a valuable tool for yeast biologists to do epigenetics research.


Assuntos
Cromatina/metabolismo , Genes Fúngicos , Histonas/metabolismo , Internet , Processamento de Proteína Pós-Traducional/genética , Saccharomyces cerevisiae/genética , Software , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Interface Usuário-Computador
4.
Database (Oxford) ; 20182018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010738

RESUMO

Translational regulation plays an important role in protein synthesis. Dysregulation of translation causes abnormal cell physiology and leads to diseases such as inflammatory disorders and cancers. An emerging technique, called ribosome profiling (ribo-seq), was developed to capture a snapshot of translation. It is based on deep sequencing of ribosome-protected mRNA fragments. A lot of ribo-seq data have been generated in various studies, so databases are needed for depositing and visualizing the published ribo-seq data. Nowadays, GWIPS-viz, RPFdb and TranslatomeDB are the three largest databases developed for this purpose. However, two challenges remain to be addressed. First, GWIPS-viz and RPFdb databases align the published ribo-seq data to the genome. Since ribo-seq data aim to reveal the actively translated mRNA transcripts, there are advantages of aligning ribo-req data to the transcriptome over the genome. Second, TranslatomeDB does not provide any visualization and the other two databases only provide visualization of the ribo-seq data around a specific genomic location, while simultaneous visualization of the ribo-seq data on multiple mRNA transcripts produced from the same gene or different genes is desired. To address these two challenges, we developed the Human Ribosome Profiling Data viewer (HRPDviewer). HRPDviewer (i) contains 610 published human ribo-seq datasets from Gene Expression Omnibus, (ii) aligns the ribo-seq data to the transcriptome and (iii) provides visualization of the ribo-seq data on the selected mRNA transcripts. Using HRPDviewer, researchers can compare the ribosome binding patterns of multiple mRNA transcripts from the same gene or different genes to gain an accurate understanding of protein synthesis in human cells. We believe that HRPDviewer is a useful resource for researchers to study translational regulation in human.Database URL: http://cosbi4.ee.ncku.edu.tw/HRPDviewer/ or http://cosbi5.ee.ncku.edu.tw/HRPDviewer/.


Assuntos
Bases de Dados Genéticas , Ribossomos/metabolismo , Humanos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Interface Usuário-Computador
5.
PLoS One ; 13(7): e0201204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30048518

RESUMO

Arsenic is a toxic metalloid. Moderate levels of arsenic exposure from drinking water can cause various human health problems such as skin lesions, circulatory disorders and cancers. Thus, arsenic toxicity is a key focus area for environmental and toxicological investigations. Many arsenic-related genes in yeast have been identified by experimental strategies such as phenotypic screening and transcriptional profiling. These identified arsenic-related genes are valuable information for studying arsenic toxicity. However, the literature about these identified arsenic-related genes is widely dispersed and cannot be easily acquired by researchers. This prompts us to develop YARG (Yeast Arsenic-Related Genes) database, which comprehensively collects 3396 arsenic-related genes in the literature. For each arsenic-related gene, the number and types of experimental evidence (phenotypic screening and/or transcriptional profiling) are provided. Users can use both search and browse modes to query arsenic-related genes in YARG. We used two case studies to show that YARG can return biologically meaningful arsenic-related information for the query gene(s). We believe that YARG is a useful resource for arsenic toxicity research. YARG is available at http://cosbi4.ee.ncku.edu.tw/YARG/.


Assuntos
Arsênio , Bases de Dados Genéticas , Genes Fúngicos , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Internet , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...