Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 30(4): 460-472.e6, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36948186

RESUMO

Hematopoietic stem cells (HSCs) regenerate blood cells throughout life. To preserve their fitness, HSCs are particularly dependent on maintaining protein homeostasis (proteostasis). However, how HSCs purge misfolded proteins is unknown. Here, we show that in contrast to most cells that primarily utilize the proteasome to degrade misfolded proteins, HSCs preferentially traffic misfolded proteins to aggresomes in a Bag3-dependent manner and depend on aggrephagy, a selective form of autophagy, to maintain proteostasis in vivo. When autophagy is disabled, HSCs compensate by increasing proteasome activity, but proteostasis is ultimately disrupted as protein aggregates accumulate and HSC function is impaired. Bag3-deficiency blunts aggresome formation in HSCs, resulting in protein aggregate accumulation, myeloid-biased differentiation, and diminished self-renewal activity. Furthermore, HSC aging is associated with a severe loss of aggresomes and reduced autophagic flux. Protein degradation pathways are thus specifically configured in young adult HSCs to preserve proteostasis and fitness but become dysregulated during aging.


Assuntos
Macroautofagia , Proteostase , Complexo de Endopeptidases do Proteassoma/metabolismo , Autofagia , Fatores de Transcrição/metabolismo , Células-Tronco Hematopoéticas/metabolismo
2.
Cell Stem Cell ; 28(11): 1950-1965.e6, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34388375

RESUMO

Maintaining proteostasis is key to resisting stress and promoting healthy aging. Proteostasis is necessary to preserve stem cell function, but little is known about the mechanisms that regulate proteostasis during stress in stem cells, and whether disruptions of proteostasis contribute to stem cell aging is largely unexplored. We determined that ex-vivo-cultured mouse and human hematopoietic stem cells (HSCs) rapidly increase protein synthesis. This challenge to HSC proteostasis was associated with nuclear accumulation of Hsf1, and deletion of Hsf1 impaired HSC maintenance ex vivo. Strikingly, supplementing cultures with small molecules that enhance Hsf1 activation partially suppressed protein synthesis, rebalanced proteostasis, and supported retention of HSC serial reconstituting activity. Although Hsf1 was dispensable for young adult HSCs in vivo, Hsf1 deficiency increased protein synthesis and impaired the reconstituting activity of middle-aged HSCs. Hsf1 thus promotes proteostasis and the regenerative activity of HSCs in response to culture stress and aging.


Assuntos
Células-Tronco Hematopoéticas , Proteostase , Envelhecimento , Animais , Senescência Celular , Camundongos , Fatores de Transcrição
3.
Virology ; 560: 17-33, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34020328

RESUMO

Envelope phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtr) have been shown to mediate binding of enveloped viruses. However, commonly used PtdSer binding molecules such as Annexin V cannot block PtdSer-mediated viral infection. Lack of reagents that can conceal envelope PtdSer and PtdEtr and subsequently inhibit infection hinders elucidation of the roles of the envelope phospholipids in viral infection. Here, we developed sTIM1dMLDR801, a reagent capable of blocking PtdSer- and PtdEtr-dependent infection of enveloped viruses. Using sTIM1dMLDR801, we found that envelope PtdSer and/or PtdEtr can support ZIKV infection of not only human but also mosquito cells. In a mouse model for ZIKV infection, sTIM1dMLDR801 reduced ZIKV load in serum and the spleen, indicating envelope PtdSer and/or PtdEtr support in viral infection in vivo. sTIM1dMLDR801 will enable elucidation of the roles of envelope PtdSer and PtdEtr in infection of various virus species, thereby facilitating identification of their receptors and transmission mechanisms.


Assuntos
Antivirais/farmacologia , Fosfatidiletanolaminas/antagonistas & inibidores , Fosfatidilserinas/antagonistas & inibidores , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Células A549 , Animais , Linhagem Celular , Chlorocebus aethiops , Culicidae/virologia , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor de Interferon alfa e beta/genética , Células Vero , Envelope Viral/metabolismo , Carga Viral/efeitos dos fármacos , Zika virus/crescimento & desenvolvimento , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/patologia , Infecção por Zika virus/transmissão , Receptor Tirosina Quinase Axl
4.
Curr Opin Hematol ; 27(4): 254-263, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452878

RESUMO

PURPOSE OF REVIEW: Protein homeostasis (proteostasis) is maintained by an integrated network of physiological mechanisms and stress response pathways that regulate the content and quality of the proteome. Maintenance of cellular proteostasis is key to ensuring normal development, resistance to environmental stress, coping with infection, and promoting healthy aging and lifespan. Recent studies have revealed that several proteostasis mechanisms can function in a cell-type-specific manner within hematopoietic stem cells (HSCs). Here, we review recent studies demonstrating that the proteostasis network functions uniquely in HSCs to promote their maintenance and regenerative function. RECENT FINDINGS: The proteostasis network is regulated differently in HSCs as compared with restricted hematopoietic progenitors. Disruptions in proteostasis are particularly detrimental to HSC maintenance and function. These findings suggest that multiple aspects of cellular physiology are uniquely regulated in HSCs to maintain proteostasis, and that precise control of proteostasis is particularly important to support life-long HSC maintenance and regenerative function. SUMMARY: The proteostasis network is uniquely configured within HSCs to promote their longevity and hematopoietic function. Future work uncovering cell-type-specific differences in proteostasis network configuration, integration, and function will be essential for understanding how HSCs function during homeostasis, in response to stress, and in disease.


Assuntos
Envelhecimento/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteoma/metabolismo , Proteostase , Humanos
5.
Cell Stem Cell ; 26(2): 138-159, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32032524

RESUMO

Cellular identity is not driven by differences in genomic content but rather by epigenomic, transcriptomic, and proteomic heterogeneity. Although regulation of the epigenome plays a key role in shaping stem cell hierarchies, differential expression of transcripts only partially explains protein abundance. The epitranscriptome, translational control, and protein degradation have emerged as fundamental regulators of proteome complexity that regulate stem cell identity and function. Here, we discuss how post-transcriptional mechanisms enable stem cell homeostasis and responsiveness to developmental cues and environmental stressors by rapidly shaping the content of their proteome and how these processes are disrupted in pre-malignant and malignant states.


Assuntos
Proteoma , Proteômica , Animais , Regulação da Expressão Gênica , Homeostase , Humanos , Proteoma/metabolismo , Células-Tronco/metabolismo
6.
Cell Rep ; 30(1): 69-80.e6, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914399

RESUMO

Low protein synthesis is a feature of somatic stem cells that promotes regeneration in multiple tissues. Modest increases in protein synthesis impair stem cell function, but the mechanisms by which this occurs are largely unknown. We determine that low protein synthesis within hematopoietic stem cells (HSCs) is associated with elevated proteome quality in vivo. HSCs contain less misfolded and unfolded proteins than myeloid progenitors. Increases in protein synthesis cause HSCs to accumulate misfolded and unfolded proteins. To test how proteome quality affects HSCs, we examine Aarssti/sti mice that harbor a tRNA editing defect that increases amino acid misincorporation. Aarssti/sti mice exhibit reduced HSC numbers, increased proliferation, and diminished serial reconstituting activity. Misfolded proteins overwhelm the proteasome within Aarssti/sti HSCs, which is associated with increased c-Myc abundance. Deletion of one Myc allele partially rescues serial reconstitution defects in Aarssti/sti HSCs. Thus, HSCs are dependent on low protein synthesis to maintain proteostasis, which promotes their self-renewal.


Assuntos
Autorrenovação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteoma/metabolismo , Animais , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Estabilidade Proteica , Desdobramento de Proteína , Proteínas Proto-Oncogênicas c-myc/metabolismo , Edição de RNA/genética , RNA de Transferência/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...