Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; 17(3): 361-381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38092311

RESUMO

BACKGROUND & AIMS: A long immune-tolerant (IT) phase lasting for decades and delayed HBeAg seroconversion (HBe-SC) in patients with chronic hepatitis B (CHB) increase the risk of liver diseases. Early entry into the immune-active (IA) phase and HBe-SC confers a favorable clinical outcome with an unknown mechanism. We aimed to identify factor(s) triggering IA entry and HBe-SC in the natural history of CHB. METHODS: To study the relevance of gut microbiota evolution in the risk of CHB activity, fecal samples were collected from CHB patients (n = 102) in different disease phases. A hepatitis B virus (HBV)-hydrodynamic injection (HDI) mouse model was therefore established in several mouse strains and germ-free mice, and multiplatform metabolomic and bacteriologic assays were performed. RESULTS: Ruminococcus gnavus was the most abundant species in CHB patients in the IT phase, whereas Akkermansia muciniphila was predominantly enriched in IA patients and associated with alanine aminotransferase flares, HBeAg loss, and early HBe-SC. HBV-HDI mouse models recapitulated this human finding. Increased cholesterol-to-bile acids (BAs) metabolism was found in IT patients because R gnavus encodes bile salt hydrolase to deconjugate primary BAs and augment BAs total pool for facilitating HBV persistence and prolonging the IT course. A muciniphila counteracted this activity through the direct removal of cholesterol. The secretome metabolites of A muciniphila, which contained small molecules structurally similar to apigenin, lovastatin, ribavirin, etc., inhibited the growth and the function of R gnavus to allow HBV elimination. CONCLUSIONS: R gnavus and A muciniphila play opposite roles in HBV infection. A muciniphila metabolites, which benefit the elimination of HBV, may contribute to future anti-HBV strategies.


Assuntos
Clostridiales , Hepatite B Crônica , Animais , Humanos , Camundongos , Akkermansia , Colesterol , Antígenos E da Hepatite B , Microbioma Gastrointestinal
2.
Acta Medica (Hradec Kralove) ; 66(2): 55-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37930094

RESUMO

In the age homogenous group of 13 healthy volunteers, we examined visual evoked potentials (VEP) visually evoked cognitive potentials (event-related potentials - ERP) and choice reaction time (CRT) five times during the day (from 10.00 a.m. up to midnight) to verify whether there are significant changes of the measured parameters of the cortical evoked potentials and CRT which might reflect the level of the mental fatigue. The electrophysiological testing was done with the use of a new portable VEP device named "VEPpeak" enabling to perform the examination outside standard labs in almost any conditions. It was found that the latency of ERP (P300 peak time) and CRT displayed significant prolongation toward midnight while VEP latency and all amplitudes did not change significantly. This pilot study supports our idea that the portable VEP device possibly might be used for the objective examination of mental fatigue that is needed in many situations. This should be confirmed in a larger study also including a comparison with non-electrophysiological fatigue testing.


Assuntos
Potenciais Evocados Visuais , Potenciais Evocados , Humanos , Projetos Piloto , Potenciais Evocados/fisiologia , Cognição , Fadiga Mental
3.
J Pediatr Gastroenterol Nutr ; 76(4): 418-423, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36946999

RESUMO

OBJECTIVES: Timely diagnosis is a critical challenge and is associated with improved survival of biliary atresia (BA) patients. We aimed to measure matrix metalloproteinase-7 (MMP-7) levels in BA patients within 3 days of birth using the dried blood spot (DBS) method and evaluate its potential as a screening tool. METHODS: The study enrolled 132 patients, including 25 patients diagnosed with BA and 107 non-BA patients with other congenital or perinatal conditions from the National Taiwan University Children Hospital. The stored DBS samples collected from 48 to 72 hours of life were retrieved from newborn screening centers. MMP-7 on the DBS was quantified using a sensitive sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS: The MMP-7 levels of BA patients on the DBS were significantly higher than those of non-BA patients (19.2 ± 10.4 vs 5.6 ± 2.7 ng/mL, P value < 0.0001). MMP-7 levels in non-BA patients, including 5 patients with hepatobiliary structural anomaly, 9 patients with intrahepatic cholestasis, and 93 patients with other perinatal diseases, were 11.6 ± 4.2 ng/mL, 6.9 ± 3.0 ng/mL, and 5.2 ± 2.1 ng/mL, respectively. The DBS MMP-7 level showed good accuracy for identifying BA, with an area under the curve of 93.7% [95% confidence interval (CI): 87.7%-99.7%]. The MMP-7 cutoff at 8.0 ng/mL showed a sensitivity of 92.0% (95% CI: 75.0%-98.6%) and specificity of 92.5% (95% CI: 85.9%-96.1%) for detecting BA from other congenital or perinatal diseases. CONCLUSIONS: MMP-7 DBS analysis can be used to distinguish BA from other conditions as early as 3 days of age.


Assuntos
Atresia Biliar , Colestase Intra-Hepática , Recém-Nascido , Criança , Humanos , Atresia Biliar/diagnóstico , Metaloproteinase 7 da Matriz , Projetos Piloto , Triagem Neonatal
4.
Cell Mol Gastroenterol Hepatol ; 15(1): 121-152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36191855

RESUMO

BACKGROUND & AIMS: Metastasis indicates a grave prognosis in patients with hepatocellular carcinoma (HCC). Our previous studies showed that RNA binding motif protein Y-linked (RBMY) is potentially a biomarker for poor survival in HCC patients, but its role in metastasis is largely unclear. METHODS: A total of 308 male patients with primary HCC were enrolled. RBMY expression was traced longitudinally by immunostaining from the manifestation of a primary HCC tumor to the formation of a distant metastasis, and its upstream regulators were screened with a protein microarray. A series of metastasis assays in mouse models and HCC cell lines were performed to explore new functional insights into RBMY. RESULTS: Cytoplasmic expression of RBMY was associated with rapid distant metastasis (approximately 1 year after resection) and had a predictive power of 82.4% for HCC metastasis. RBMY conferred high migratory and invasive potential upon phosphorylation by the provirus integration in Moloney 1 (PIM1) kinase. Binding of PIM1 to RBMY caused mutual stabilization and massive translocation of RBMY from nuclei to mitochondria, thereby preventing mitochondrial apoptosis and augmenting mitochondrial generation of adenosine triphosphate/reactive oxygen species to enhance cell motility. Depletion of RBMY suppressed Snail1/zinc finger E-box binding homeobox transcription factor 1-mediated epithelial-mesenchymal transition and dynamin-related protein 1-dependent mitochondrial fission. Inactivation and knockout of PIM1 down-regulated the expression of RBMY. In nude mice, cytoplasmic RBMY promoted liver-to-lung metastasis by increasing epithelial-mesenchymal transition, mitochondrial proliferation, and mitochondrial fission, whereas nuclear-restricted RBMY impeded the mitochondrial switch and failed to induce lung metastasis. CONCLUSIONS: This study showed the regulation of HCC metastasis by PIM1-driven cytoplasmic expression of RBMY and suggested a novel therapeutic target for attenuating metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Proteínas Nucleares , Proteínas Proto-Oncogênicas c-pim-1 , Proteínas de Ligação a RNA , Animais , Masculino , Camundongos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/secundário , Camundongos Nus , Integração Viral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
5.
Liver Int ; 42(10): 2154-2166, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35762289

RESUMO

BACKGROUND AND AIMS: The immunologic features involved in the immune-tolerant phase of chronic hepatitis B (CHB) virus (HBV) infection are unclear. The hepatitis B virus X (HBx) protein disrupts IFN-ß induction by downregulating MAVS and may destroy subsequent HBV-specific adaptive immunity. We aimed to analyse the impacts of genetic variability of HBx in CHB patients on the immune-tolerant phase during long-term follow-up. METHODS: Children with CHB in the immune-tolerant phase were recruited and followed longitudinally. HBx gene sequencing of infecting HBV strains was performed, and the effects of HBx mutations on the immune-tolerant phase were assessed. Restoration of the host immune response to end the immune-tolerant phase was investigated by immunoblotting, immunostaining, ELISA and reporter assays of MAVS/IFN-ß signalling in liver cell lines, patient liver tissues and the HBV plasmid replication system. RESULTS: A total of 173 children (median age, 6.92 years) were recruited. Patients carrying HBx R87G, I127V and R87G + I127V double mutations exhibited higher cumulative incidences of immune-tolerant phase breakthrough (p = .011, p = .006 and p = .017 respectively). Cells transfected with HBx R87G and I127V mutants and pHBV1.3-B6.3 replicons containing the HBx R87G and I127V mutations exhibited statistically increased levels of IFN-ß, especially under poly(I:C) stimulation or Flag-MAVS cotransfection. HA-HBx wild-type interacted with Flag-MAVS and enhanced its ubiquitination, but this ability was diminished in the R87G and I127V mutants. CONCLUSIONS: HBx suppresses IFN-ß induction. R87G and I127V mutation restored IFN-ß production by preventing MAVS degradation, contributing to curtailing the HBV immune-tolerant phase in CHB patients.


Assuntos
Hepatite B Crônica , Hepatite B , Imunidade Adaptativa , Criança , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/genética , Humanos , Imunidade Inata , Replicação Viral
6.
Clin Hemorheol Microcirc ; 81(3): 205-219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342082

RESUMO

BACKGROUND: Coronavirus disease (COVID-19) associated endotheliopathy and microvascular dysfunction are of concern. OBJECTIVE: The objective of the present single-center observational pilot study was to compare endothelial glycocalyx (EG) damage and endotheliopathy in patients with severe COVID-19 (COVID-19 group) with patients with bacterial pneumonia with septic shock (non-COVID group). METHODS: Biomarkers of EG damage (syndecan-1), endothelial cells (EC) damage (thrombomodulin), and activation (P-selectin) were measured in blood on three consecutive days from admission to the intensive care unit (ICU). The sublingual microcirculation was studied by Side-stream Dark Field (SDF) imaging with automatic assessment. RESULTS: We enrolled 13 patients in the non-COVID group (mean age 70 years, 6 women), and 15 in the COVID-19 group (64 years old, 3 women). The plasma concentrations of syndecan-1 were significantly higher in the COVID-19 group during all three days. Differences regarding other biomarkers were not statistically significant. The assessment of the sublingual microcirculation showed improvement on Day 2 in the COVID-19 group. Plasma levels of C-reactive protein (CRP) were significantly higher on the first two days in the COVID-19 group. Plasma syndecan-1 and CRP were higher in patients suffering from severe COVID-19 pneumonia compared to bacterial pneumonia patients. CONCLUSIONS: These findings support the role of EG injury in the microvascular dysfunction in COVID-19 patients who require ICU.


Assuntos
COVID-19 , Células Endoteliais , Glicocálix , Idoso , Biomarcadores , COVID-19/patologia , Células Endoteliais/patologia , Feminino , Glicocálix/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Respiração Artificial , Sindecana-1/metabolismo
7.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269659

RESUMO

Tumor viruses gain control of cellular functions when they infect and transform host cells. Alternative splicing is one of the cellular processes exploited by tumor viruses to benefit viral replication and support oncogenesis. Epstein-Barr virus (EBV) participates in a number of cancers, as reported mostly in nasopharyngeal carcinoma (NPC) and Burkitt lymphoma (BL). Using RT-nested-PCR and Northern blot analysis in NPC and BL cells, here we demonstrate that EBV promotes specific alternative splicing of TSG101 pre-mRNA, which generates the TSG101∆154-1054 variant though the agency of its viral proteins, such as EBNA-1, Zta and Rta. The level of TSG101∆154-1054 is particularly enhanced upon EBV entry into the lytic cycle, increasing protein stability of TSG101 and causing the cumulative synthesis of EBV late lytic proteins, such as VCA and gp350/220. TSG101∆154-1054-mediated production of VCA and gp350/220 is blocked by the overexpression of a translational mutant of TSG101∆154-1054 or by the depletion of full-length TSG101, which is consistent with the known role of the TSG101∆154-1054 protein in stabilizing the TSG101 protein. NPC patients whose tumor tissues express TSG101∆154-1054 have high serum levels of anti-VCA antibodies and high levels of viral DNA in their tumors. Our findings highlight the functional importance of TSG101∆154-1054 in allowing full completion of the EBV lytic cycle to produce viral particles. We propose that targeting EBV-induced TSG101 alternative splicing has broad potential as a therapeutic to treat EBV-associated malignancies.


Assuntos
Proteínas de Ligação a DNA , Complexos Endossomais de Distribuição Requeridos para Transporte , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Splicing de RNA , Fatores de Transcrição , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Herpesvirus Humano 4/genética , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/patologia , Precursores de RNA/genética , Fatores de Transcrição/genética
8.
J Biomed Sci ; 28(1): 19, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750401

RESUMO

BACKGROUND: The bile salt export pump (BSEP) is a pivotal apical/canalicular bile salt transporter in hepatocytes that drives the bile flow. Defects in BSEP function and canalicular expression could lead to a spectrum of cholestatic liver diseases. One prominent manifestation of BSEP-associated cholestasis is the defective canalicular localization and cytoplasmic retention of BSEP. However, the etiology of impaired BSEP targeting to the canalicular membrane is not fully understood. Our goal was to discover what molecule could interact with BSEP and affect its post-Golgi sorting. METHODS: The human BSEP amino acids (a.a.) 491-630 was used as bait to screen a human fetal liver cDNA library through yeast two-hybrid system. We identified a BSEP-interacting candidate and showed the interaction and colocalization in the co-immunoprecipitation in hepatoma cell lines and histological staining in human liver samples. Temperature shift assays were used to study the post-Golgi trafficking of BSEP. We further determine the functional impacts of the BSEP-interacting candidate on BSEP in vitro. A hydrodynamically injected mouse model was established for in vivo characterizing the long-term impacts on BSEP. RESULTS: We identified that charged multivesicular body protein 5 (CHMP5), a molecule of the endosomal protein complex required for transport subcomplex-III (ESCRT-III), interacted and co-localized with BSEP in the subapical compartments (SACs) in developing human livers. Cholestatic BSEP mutations in the CHMP5-interaction region have defects in canalicular targeting and aberrant retention at the SACs. Post-Golgi delivery of BSEP and bile acid secretion were impaired in ESCRT-III perturbation or CHMP5-knockdown hepatic cellular and mouse models. This ESCRT-III-mediated BSEP sorting preceded Rab11A-regulated apical cycling of BSEP. CONCLUSIONS: Our results showed the first example that ESCRT-III is essential for canalicular trafficking of apical membrane proteins, and provide new targets for therapeutic approaches in BSEP associated cholestasis.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Pré-Escolar , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Lactente , Recém-Nascido , Fígado , Masculino , Camundongos , Transporte Proteico
9.
Int J Mol Sci ; 20(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759747

RESUMO

TSG101 (Tumor susceptibility 101) gene and its aberrantly spliced isoform, termed TSG101∆154-1054, are tightly linked to tumorigenesis in various cancers. The aberrant TSG101∆154-1054 mRNA is generated from cancer-specific re-splicing of mature TSG101 mRNA. The TSG101∆154-1054 protein protects the full-length TSG101 protein from ubiquitin-mediated degradation, implicating TSG101∆154-1054 protein in the progression of cancer. Here, we confirmed that the presence of TSG101∆154-1054 mRNA indeed caused an accumulation of the TSG101 protein in biopsies of human nasopharyngeal carcinoma (NPC), which was recapitulated by the overexpression of TSG101∆154-1054 in the NPC cell line TW01. We demonstrate the potential function of the TSG101∆154-1054 protein in the malignancy of human NPC with scratch-wound healing and transwell invasion assays. By increasing the stability of the TSG101 protein, TSG101∆154-1054 specifically enhanced TSG101-mediated TW01 cell migration and invasion, suggesting the involvement in NPC metastasis in vivo. This finding sheds light on the functional significance of TSG101∆154-1054 generation via re-splicing of TSG101 mRNA in NPC metastasis and hints at its potential importance as a therapeutic target.


Assuntos
Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Metástase Neoplásica/genética , Splicing de RNA/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética , Adulto , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Invasividade Neoplásica
10.
Gastroenterology ; 154(1): 154-167, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28912020

RESUMO

BACKGROUND & AIMS: Dysbiosis of the intestinal microbiota has been associated with development of allergies in infants. However, it is not clear what microbes might contribute to this process. We investigated what microbe(s) might be involved in analyses of infant twins and mice. METHODS: We studied fecal specimens prospectively in a twin cohort (n = 30) and age-matched singletons (n = 14) born at National Taiwan University Children's Hospital, Taipei, Taiwan, from April 2011 to March 2013. Clinical parameters (gestational age, birth body weight, mode of delivery and feeding, immunizations, and medical events) were recorded. Fecal samples were collected beginning immediately after birth and for 1 year; the children were followed until 3 years of age and allergic symptoms (repetitive and continuous for at least 6 months) were noted. A skin prick test was used to ascertain atopy. Bacterial communities in fecal samples were profiled by 16S ribosomal RNA-based polymerase chain reaction-temporal temperature gradient gel electrophoresis and next-generation sequencing. BALB/c mice without and with ovalbumin sensitization/challenge were infected with candidate bacteria by oral gauge intragastric intubation. Fecal, serum, lung, and colon tissue samples were collected from mice and analyzed for mechanisms of allergy development. RESULTS: During the investigation period, 20 children (45.5%) developed allergic diseases, including respiratory (allergic rhinitis and asthma) and skin (atopic dermatitis and eczema) allergies. Lachnospiraceae were detected at significantly higher frequency in allergic infants than nonallergic infants (P < .004); the high fecal count of Lachnospiraceae in allergic subjects appeared at 2 months of age and persisted until 12 months of age. The enrichment of Lachnospiraceae in allergic infants was attributed to the overgrowth of Ruminococcus gnavus, which tended to have a low frequency in nonallergic subjects (P = .0004). Increased R gnavus was observed before the onset of allergic manifestations, and was associated with respiratory allergies (P < .002) or respiratory allergies coexistent with atopic eczema (P < .001). In mice, endogenous R gnavus grew rapidly after sensitization and challenge with ovalbumin. Mice gavaged with purified R gnavus developed airway hyper-responsiveness and had histologic evidence of airway inflammation (asthma). Expansion of R gnavus in mice stimulated secretion of cytokines (interleukin [IL] 25, IL33, and thymic stromal lymphopoietin) by colon tissues, which activated type 2 innate lymphoid cells and dendritic cells to promote differentiation of T-helper 2 cells and production of their cytokines (IL4, IL5, and IL13). This led to infiltration of the colon and lung parenchyma by eosinophils and mast cells. CONCLUSIONS: In a study of a twin cohort (some infants with, some without allergies), we associated development of allergies, particularly respiratory allergies, with increased fecal abundance of R gnavus. Mice fed R gnavus developed airway inflammation, characterized by expansion of T-helper 2 cells in the colon and lung, and infiltration of colon and lung parenchyma by eosinophils and mast cells.


Assuntos
Doenças em Gêmeos/microbiologia , Disbiose/epidemiologia , Disbiose/microbiologia , Microbioma Gastrointestinal , Hipersensibilidade/microbiologia , Ruminococcus/isolamento & purificação , Animais , Estudos de Coortes , Doenças em Gêmeos/epidemiologia , Feminino , Humanos , Hipersensibilidade/epidemiologia , Lactente , Recém-Nascido , Masculino
11.
Bioinformatics ; 34(2): 314-316, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29028982

RESUMO

SUMMARY: Cancer hallmarks, a concept that seeks to explain the complexity of cancer initiation and development, provide a new perspective of studying cancer signaling which could lead to a greater understanding of this complex disease. However, to the best of our knowledge, there is currently a lack of tools that support such hallmark-based study of the cancer signaling network, thereby impeding the gain of knowledge in this area. We present TROVE, an user-friendly software that facilitates hallmark annotation, visualization and analysis in cancer signaling networks. In particular, TROVE facilitates hallmark analysis specific to particular cancer types. AVAILABILITY AND IMPLEMENTATION: Available under the Eclipse Public License from: https://sites.google.com/site/cosbyntu/softwares/trove and https://github.com/trove2017/Trove.

12.
Methods ; 129: 60-80, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552265

RESUMO

Given a signaling network, the target combination prediction problem aims to predict efficacious and safe target combinations for combination therapy. State-of-the-art in silico methods use Monte Carlo simulated annealing (mcsa) to modify a candidate solution stochastically, and use the Metropolis criterion to accept or reject the proposed modifications. However, such stochastic modifications ignore the impact of the choice of targets and their activities on the combination's therapeutic effect and off-target effects, which directly affect the solution quality. In this paper, we present mascot, a method that addresses this limitation by leveraging two additional heuristic criteria to minimize off-target effects and achieve synergy for candidate modification. Specifically, off-target effects measure the unintended response of a signaling network to the target combination and is often associated with toxicity. Synergy occurs when a pair of targets exerts effects that are greater than the sum of their individual effects, and is generally a beneficial strategy for maximizing effect while minimizing toxicity. mascot leverages on a machine learning-based target prioritization method which prioritizes potential targets in a given disease-associated network to select more effective targets (better therapeutic effect and/or lower off-target effects); and on Loewe additivity theory from pharmacology which assesses the non-additive effects in a combination drug treatment to select synergistic target activities. Our experimental study on two disease-related signaling networks demonstrates the superiority of mascot in comparison to existing approaches.


Assuntos
Quimioterapia Combinada/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Software , Biologia de Sistemas/métodos , Simulação por Computador , Humanos , Aprendizado de Máquina , Transdução de Sinais/genética
13.
Oncotarget ; 7(7): 8240-52, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26811492

RESUMO

Tumor susceptibility gene 101 (TSG101) elicits an array of cellular functions, including promoting cytokinesis, cell cycle progression and proliferation, as well as facilitating endosomal trafficking and viral budding. TSG101 protein is highly and aberrantly expressed in various human cancers. Specifically, a TSG101 splicing variant missing nucleotides 154 to 1054 (TSGΔ154-1054), which is linked to progressive tumor-stage and metastasis, has puzzled investigators for more than a decade. TSG101-associated E3 ligase (Tal)- and MDM2-mediated proteasomal degradation are the two major routes for posttranslational regulation of the total amount of TSG101. We reveal that overabundance of TSG101 results from TSGΔ154-1054 stabilizing the TSG101 protein by competitively binding to Tal, but not MDM2, thereby perturbing the Tal interaction with TSG101 and impeding subsequent polyubiquitination and proteasomal degradation of TSG101. TSGΔ154-1054 therefore specifically enhances TSG101-stimulated cell proliferation, clonogenicity, and tumor growth in nude mice. This finding shows the functional significance of TSGΔ154-1054 in preventing the ubiquitin-proteasome proteolysis of TSG101, which increases tumor malignancy and hints at its potential as a therapeutic target in cancer treatment.


Assuntos
Transformação Celular Neoplásica/patologia , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Neoplasias/patologia , Splicing de RNA/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Northern Blotting , Western Blotting , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica , Transporte Proteico , Proteólise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Hepatology ; 62(5): 1480-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26185016

RESUMO

UNLABELLED: Male predominance of hepatocellular carcinoma (HCC) occurs particularly among young children aged 6-9 years, indicative of a possible role of the Y chromosome-encoded oncogene in addition to an androgenic effect. The discovery of oncogenic activation of RBMY (RNA-binding motif on Y chromosome), which is absent in normal hepatocytes but present in male HCC tissues, sheds light on this issue. Herein, we report on a critical hepatocarcinogenic role of RBMY and its ontogenic origin. During liver development, the Ser/Thr phosphorylated RBMY is expressed in the cytoplasm of human and rodent fetal livers. It is then silenced in mature hepatocytes and restricted to scarce expression in the bile ductular cells. Upon hepatocarcinogenesis, a noteworthy increase of cytoplasmic and nuclear RBMY is observed in HCC tissues; however, only the former is expressed dominantly in hepatic cancer stem cells and correlates significantly to a poor prognosis and decreased survival rate in HCC patients. Cytoplasmic expression of RBMY, which is mediated by binding to nuclear exporter chromosome region maintenance 1 and further enriched upon Wnt-3a stimulation, confers upon tumor cells the traits of cancer stem cell by augmenting self-renewal, chemoresistance, cell-cycle progression, proliferation, and xenograft tumor growth. This is achieved mechanistically through increasing Ser9 phosphorylation-inactivation of glycogen synthase kinase 3ß by RBMY, thereby impeding the glycogen synthase kinase 3ß-dependent degradation of ß-catenin and eventually inducing the nuclear entry of ß-catenin for the transcription of downstream oncogenes. CONCLUSION: RBMY is a novel oncofetal protein that plays a key role in attenuating glycogen synthase kinase 3ß activity, leading to aberrant activation of Wnt/ß-catenin signaling, which facilitates malignant hepatic stemness; because of its absence from normal human tissues except the testis, RBMY represents a feasible therapeutic target for the selective eradication of HCC cells in male patients.


Assuntos
Carcinoma Hepatocelular/mortalidade , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Neoplasias Hepáticas/mortalidade , Proteínas Nucleares/fisiologia , Proteínas de Ligação a RNA/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Feminino , Glicogênio Sintase Quinase 3 beta , Humanos , Lactente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Sinais de Exportação Nuclear , Fosforilação , Prognóstico , Estabilidade Proteica , Ratos , Proteína Wnt3A/fisiologia , beta Catenina/metabolismo
15.
Bioinformatics ; 31(20): 3306-14, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26079348

RESUMO

MOTIVATION: Target characterization for a biochemical network is a heuristic evaluation process that produces a characterization model that may aid in predicting the suitability of each molecule for drug targeting. These approaches are typically used in drug research to identify novel potential targets using insights from known targets. Traditional approaches that characterize targets based on their molecular characteristics and biological function require extensive experimental study of each protein and are infeasible for evaluating larger networks with poorly understood proteins. Moreover, they fail to exploit network connectivity information which is now available from systems biology methods. Adopting a network-based approach by characterizing targets using network features provides greater insights that complement these traditional techniques. To this end, we present Tenet (Target charactErization using NEtwork Topology), a network-based approach that characterizes known targets in signalling networks using topological features. RESULTS: Tenet first computes a set of topological features and then leverages a support vector machine-based approach to identify predictive topological features that characterizes known targets. A characterization model is generated and it specifies which topological features are important for discriminating the targets and how these features should be combined to quantify the likelihood of a node being a target. We empirically study the performance of Tenet from a wide variety of aspects, using several signalling networks from BioModels with real-world curated outcomes. Results demonstrate its effectiveness and superiority in comparison to state-of-the-art approaches. AVAILABILITY AND IMPLEMENTATION: Our software is available freely for non-commercial purposes from: https://sites.google.com/site/cosbyntu/softwares/tenet CONTACT: hechua@ntu.edu.sg or assourav@ntu.edu.sg SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Transdução de Sinais , Máquina de Vetores de Suporte , Algoritmos , Humanos , Mapeamento de Interação de Proteínas , Software
16.
BMC Syst Biol ; 9 Suppl 1: S4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25707537

RESUMO

The ongoing cancer research has shown that malignant tumour cells have highly disrupted signalling transduction pathways. In cancer cells, signalling pathways are altered to satisfy the demands of continuous proliferation and survival. The changes in signalling pathways supporting uncontrolled cell growth, termed as rewiring, can lead to dysregulation of cell fates e.g. apoptosis. Hence comparative analysis of normal and oncogenic signal transduction pathways may provide insights into mechanisms of cancer drug-resistance and facilitate the discovery of novel and effective anti-cancer therapies. Here we propose a hybrid modelling approach based on ordinary differential equation (ODE) and machine learning to map network rewiring in the apoptotic pathways that may be responsible for the increase of drug sensitivity of tumour cells in triple-negative breast cancer. Our method employs Genetic Algorithm to search for the most likely network topologies by iteratively generating simulated protein phosphorylation data using ODEs and the rewired network and then fitting the simulated data with real data of cancer signalling and cell fate. Most of our predictions are consistent with experimental evidence from literature. Combining the strengths of knowledge-driven and data-driven approaches, our hybrid model can help uncover molecular mechanisms of cancer cell fate at systems level.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Simulação por Computador , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Algoritmos , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Modelos Biológicos
17.
PLoS Pathog ; 8(9): e1002904, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22969426

RESUMO

The cellular endosomal sorting complex required for transport (ESCRT) machinery participates in membrane scission and cytoplasmic budding of many RNA viruses. Here, we found that expression of dominant negative ESCRT proteins caused a blockade of Epstein-Barr virus (EBV) release and retention of viral BFRF1 at the nuclear envelope. The ESCRT adaptor protein Alix was redistributed and partially colocalized with BFRF1 at the nuclear rim of virus replicating cells. Following transient transfection, BFRF1 associated with ESCRT proteins, reorganized the nuclear membrane and induced perinuclear vesicle formation. Multiple domains within BFRF1 mediated vesicle formation and Alix recruitment, whereas both Bro and PRR domains of Alix interacted with BFRF1. Inhibition of ESCRT machinery abolished BFRF1-induced vesicle formation, leading to the accumulation of viral DNA and capsid proteins in the nucleus of EBV-replicating cells. Overall, data here suggest that BFRF1 recruits the ESCRT components to modulate nuclear envelope for the nuclear egress of EBV.


Assuntos
Núcleo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Herpesvirus Humano 4/fisiologia , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Ligação Proteica/genética , Transporte Proteico , Distribuição Tecidual , Transfecção , Proteínas Virais/genética , Proteínas Virais/fisiologia , Montagem de Vírus/genética , Liberação de Vírus/genética , Liberação de Vírus/fisiologia
18.
J Med Virol ; 84(8): 1279-88, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22711357

RESUMO

Epstein-Barr virus (EBV) belongs to the gammaherpesvirus family. To produce infectious progeny, EBV reactivates from latency into the lytic cycle by expressing the determinative lytic transactivator, Zta. In the presence of histone deacetylase inhibitor (HDACi), p53 is a prerequisite for the initiation of the EBV lytic cycle by facilitating the expression of Zta. In this study, a serial mutational analysis of Zta promoter (Zp) indicated an important role for the ZID element in responding to HDACi induction and p53 binds to this ZID element together with Sp1, a universal transcription factor. Abolition of the DNA-binding ability of Sp1 reduces the inducibility of ZID by HDACi and also reduces the amount of p53 binding to ZID. Finally, it was shown that EBV in p53-positive-lymphoblastoid cell lines (LCLs) can enter into the lytic cycle spontaneously; however, knockdown of p53 in LCLs leads to retardation of EBV reactivation.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/metabolismo , Regiões Promotoras Genéticas/genética , Fator de Transcrição Sp1/metabolismo , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Análise Mutacional de DNA , Herpesvirus Humano 4/genética , Humanos , Fator de Transcrição Sp1/genética , Transativadores/genética , Proteína Supressora de Tumor p53/genética , Ativação Viral
19.
Head Neck ; 30(12): 1575-85, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18798303

RESUMO

BACKGROUND: Inhibitors of apoptosis proteins (IAPs), which counteract apoptosis by potently inhibiting caspase activation, are promising targets of new anti-tumor therapy. However, their roles in the pathogenesis of nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-associated carcinoma, are not fully understood. Herein, we investigated the expression and regulation of IAPs in NPC. METHODS AND RESULTS: Using real-time quantitative polymerase chain reaction (PCR) analysis, we found that among the IAPs family only the transcription of survivin, HIAP-1, and HIAP-2 was consistently up-regulated in NPC and metastatic NPC tissues. Immunohistochemical staining showed that their proteins were more predominantly expressed in tumor cells nests. Noteworthy, these IAPs were upregulated by interleukin-1 alpha stimulation or EBV infection, and subsequently resulted in triggering rapid proliferation of NPC verified by strong Ki-67 staining. CONCLUSION: Survivin, HIAP-1, and HIAP-2 were distinctly upregulated in NPC, suggesting they may play significant roles in NPC tumorigenesis and serve as tumor markers with prognostic and therapeutic implications.


Assuntos
Carcinoma de Células Escamosas/genética , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Proteínas Inibidoras de Apoptose/genética , Proteínas Associadas aos Microtúbulos/genética , Neoplasias Nasofaríngeas/genética , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Caspases/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Humanos , Interleucina-1alfa/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/virologia , Reação em Cadeia da Polimerase , Survivina
20.
J Virol ; 82(15): 7745-51, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18495777

RESUMO

The tumor suppressor gene p53 plays a central role in the maintenance of normal cell growth and genetic integrity, while its impact on the Epstein-Barr virus (EBV) life cycle remains elusive. We found that p53 is important for histone deacetylase inhibitor-induced EBV lytic gene expression in nasopharyngeal carcinoma cells. Restoration of p53 in p53-null, EBV-infected H1299 cells augments the potential for viral lytic cycle initiation. Evidence from reporter assays demonstrated that p53 contributes to the expression of the immediate-early viral Zta gene. Further analysis indicated that the DNA-binding ability of p53 and phosphorylation of Ser392 may be critical. This study provides the first evidence that p53 is involved in the regulation of EBV lytic cycle initiation.


Assuntos
Herpesvirus Humano 4/fisiologia , Inibidores de Histona Desacetilases , Transativadores/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Ativação Viral , Linhagem Celular Tumoral , Teste de Complementação Genética , Humanos , Proteína Supressora de Tumor p53/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...