Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 8: 55, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646386

RESUMO

We demonstrate a versatile acoustically active surface consisting of an ensemble of piezoelectric microstructures that are capable of radiating and sensing acoustic waves. A freestanding microstructure array embossed in a single step on a flexible piezoelectric sheet of polyvinylidene fluoride (PVDF) leads to high-quality acoustic performance, which can be tuned by the design of the embossed microstructures. The high sensitivity and large bandwidth for sound generation demonstrated by this acoustically active surface outperform previously reported thin-film loudspeakers using PVDF, PVDF copolymers, or voided charged polymers without microstructures. We further explore the directivity of this device and its use on a curved surface. In addition, high-fidelity sound perception is demonstrated by the surface, enabling its microphonic application for voice recording and speaker recognition. The versatility, high-quality acoustic performance, minimal form factor, and scalability of future production of this acoustically active surface can lead to broad industrial and commercial adoption for this technology.

2.
Nano Lett ; 21(24): 10244-10251, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34874728

RESUMO

The use of molecules as active components to build nanometer-scale devices inspires emerging device concepts that employ the intrinsic functionality of molecules to address longstanding challenges facing nanoelectronics. Using molecules as controllable-length nanosprings, here we report the design and operation of a nanoelectromechanical (NEM) switch which overcomes the typical challenges of high actuation voltages and slow switching speeds for previous NEM technologies. Our NEM switches are hierarchically assembled using a molecular spacer layer sandwiched between atomically smooth electrodes, which defines a nanometer-scale electrode gap and can be electrostatically compressed to repeatedly modulate the tunneling current. The molecular layer and the top electrode structure serve as two degrees of design freedom with which to independently tailor static and dynamic device characteristics, enabling simultaneous low turn-on voltages (sub-3 V) and short switching delays (2 ns). This molecular platform with inherent nanoscale modularity provides a versatile strategy for engineering diverse high-performance and energy-efficient electromechanical devices.


Assuntos
Eletrodos
3.
Nature ; 590(7847): 587-593, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627807

RESUMO

Metal halide perovskite solar cells (PSCs) are an emerging photovoltaic technology with the potential to disrupt the mature silicon solar cell market. Great improvements in device performance over the past few years, thanks to the development of fabrication protocols1-3, chemical compositions4,5 and phase stabilization methods6-10, have made PSCs one of the most efficient and low-cost solution-processable photovoltaic technologies. However, the light-harvesting performance of these devices is still limited by excessive charge carrier recombination. Despite much effort, the performance of the best-performing PSCs is capped by relatively low fill factors and high open-circuit voltage deficits (the radiative open-circuit voltage limit minus the high open-circuit voltage)11. Improvements in charge carrier management, which is closely tied to the fill factor and the open-circuit voltage, thus provide a path towards increasing the device performance of PSCs, and reaching their theoretical efficiency limit12. Here we report a holistic approach to improving the performance of PSCs through enhanced charge carrier management. First, we develop an electron transport layer with an ideal film coverage, thickness and composition by tuning the chemical bath deposition of tin dioxide (SnO2). Second, we decouple the passivation strategy between the bulk and the interface, leading to improved properties, while minimizing the bandgap penalty. In forward bias, our devices exhibit an electroluminescence external quantum efficiency of up to 17.2 per cent and an electroluminescence energy conversion efficiency of up to 21.6 per cent. As solar cells, they achieve a certified power conversion efficiency of 25.2 per cent, corresponding to 80.5 per cent of the thermodynamic limit of its bandgap.

4.
Adv Mater ; 27(8): 1414-9, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25573086

RESUMO

Fluorene-free perovskite light-emitting diodes (LEDs) with low turn-on voltages, higher luminance and sharp, color-pure electroluminescence are obtained by replacing the F8 electron injector with ZnO, which is directly deposited onto the CH3NH3PbBr3 perovskite using spatial atmospheric atomic layer deposition. The electron injection barrier can also be reduced by decreasing the ZnO electron affinity through Mg incorporation, leading to lower turn-on voltages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...