Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 3(10): 14371-14379, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458125

RESUMO

Transition metal dichalcogenides, especially MoS2 and related MoS3, have attracted attention as potential replacement of platinum for electrochemical energy applications. These materials are typically treated before the use in solvents. It is assumed that these solvents do not influence follow-up electrochemistry. Here, we show that the oxygen reduction overpotentials as well as inherent electrochemistry of MoS3 is dramatically influenced by solvents used, them being water, acetonitrile, dimethylformamide, or ethanol. This has a profound impact on the interpretation of the electrochemical studies and the choice of MoS x solvent treatment.

2.
Phys Chem Chem Phys ; 19(9): 6610-6619, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28203654

RESUMO

MoS2 has been investigated intensively in the field of catalysis for the hydrogen evolution reaction (HER) in particular. Much effort has been made by various research teams worldwide to look into the specific catalyst design such as nano-structuring, defect engineering or hybrid structures. But what evades us is the fundamental preparation method for the dispersion of powdered MoS2. Individual research teams with their best practices might be subjective and not validated by extensive experimental results. In this report, we find that the overpotential for the catalysis of HER varies from 0.57 to 0.72 V (freshly prepared) when different dispersion media are used, such as acetonitrile, N,N-dimethylformamide, ethanol, methanol and water. In terms of oxygen reduction reaction (ORR) catalysis, less significant differences were found. With both HER and ORR pertinent to the fuel cell industry, this report would serve as an insight to readers when comparing the results of MoS2 catalysis across the literature from different research groups when different solvents were used as the dispersion medium.

3.
Chemistry ; 23(13): 3169-3177, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28005301

RESUMO

Molybdenum disulfide (MoS2 ) is at the forefront of materials research. It shows great promise for electrochemical applications, especially for hydrogen evolution reaction (HER) catalysis. There is a significant discrepancy in the literature on the reported catalytic activity for HER catalysis on MoS2 . Here we test the electrochemical performance of MoS2 obtained from seven sources and we show that these sources provide MoS2 of various phase purity (2H and 3R, and their mixtures) and composition, which is responsible for their different electrochemical properties. The overpotentials for HER at -10 mA cm-2 for MoS2 from seven different sources range from -0.59 V to -0.78 V vs. reversible hydrogen electrode (RHE). This is of very high importance as with much interest in 2D-MoS2 , the use of the top-down approach would usually involve the application of commercially available MoS2 . These commercially available MoS2 are rarely characterized for composition and phase purity. These key parameters are responsible for large variance of reported catalytic properties of MoS2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...