Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(41): eabo6043, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223455

RESUMO

Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs.

2.
Nanomaterials (Basel) ; 12(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35159921

RESUMO

Nanoparticles (NPs) have remarkable properties for delivering therapeutic drugs to the body's targeted cells. NPs have shown to be significantly more efficient as drug delivery carriers than micron-sized particles, which are quickly eliminated by the immune system. Biopolymer-based polymeric nanoparticles (PNPs) are colloidal systems composed of either natural or synthetic polymers and can be synthesized by the direct polymerization of monomers (e.g., emulsion polymerization, surfactant-free emulsion polymerization, mini-emulsion polymerization, micro-emulsion polymerization, and microbial polymerization) or by the dispersion of preformed polymers (e.g., nanoprecipitation, emulsification solvent evaporation, emulsification solvent diffusion, and salting-out). The desired characteristics of NPs and their target applications are determining factors in the choice of method used for their production. This review article aims to shed light on the different methods employed for the production of PNPs and to discuss the effect of experimental parameters on the physicochemical properties of PNPs. Thus, this review highlights specific properties of PNPs that can be tailored to be employed as drug carriers, especially in hospitals for point-of-care diagnostics for targeted therapies.

3.
JACS Au ; 2(1): 223-233, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35098239

RESUMO

Direct delivery of proteins into plants represents a promising alternative to conventional gene delivery for probing and modulating cellular functions without the risk of random integration of transgenes into the host genome. This remains challenging, however, because of the lack of a protein delivery tool applicable to diverse plant species and the limited information about the entry mechanisms of exogenous proteins in plant cells. Here, we present the synthetic multidomain peptide (named dTat-Sar-EED4) for cytosolic protein delivery in various plant species via simple peptide-protein coincubation. dTat-Sar-EED4 enabled the cytosolic delivery of an active enzyme with up to ∼20-fold greater efficiency than previously described cell-penetrating peptides in several model plant systems. Our analyses using pharmacological inhibitors and transmission electron microscopy revealed that dTat-Sar-EED4 triggered a unique endocytic mechanism for cargo protein internalization. This endocytic mechanism shares several features with macropinocytosis, including the dependency of actin polymerization, sensitivity to phosphatidylinositol-3 kinase activity, and formation of membrane protrusions and large intracellular vesicles (>200 nm in diameter), even though macropinocytosis has not been identified to date in plants. Our study thus presents a robust molecular tool that can induce a unique cellular uptake mechanism for the efficient transport of bioactive proteins into plants.

4.
Int J Biol Macromol ; 186: 414-423, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34246679

RESUMO

Polyhydroxyalkanoates (PHAs) are biopolyesters synthesized by microorganisms as intracellular energy reservoirs under stressful environmental conditions. PHA synthase (PhaC) is the key enzyme responsible for PHA biosynthesis, but the importance of its N- and C-terminal ends still remains elusive. Six plasmid constructs expressing truncation variants of Aquitalea sp. USM4 PhaC (PhaC1As) were generated and heterologously expressed in Cupriavidus necator PHB-4. Removal of the first six residues at the N-terminus enabled the modulation of PHA composition without altering the PHA content in cells. Meanwhile, deletion of 13 amino acids from the C-terminus greatly affected the catalytic activity of PhaC1As, retaining only 1.1-7.4% of the total activity. Truncation(s) at the N- and/or C-terminus of PhaC1As gradually diminished the incorporation of comonomer units, and revealed that the N-terminal region is essential for PhaC1As dimerization whereas the C-terminal region is required for stabilization. Notably, transmission electron microscopy analysis showed that PhaC modification affected the morphology of intracellular PHA granules, which until now is only known to be regulated by phasins. This study provided substantial evidence and highlighted the significance of both the N- and C-termini of PhaC1As in regulating intracellular granule morphology, activity, substrate specificity, dimerization and stability of the synthase.


Assuntos
Aciltransferases/metabolismo , Betaproteobacteria/enzimologia , Corpos de Inclusão/enzimologia , Poli-Hidroxialcanoatos/metabolismo , Aciltransferases/química , Aciltransferases/genética , Betaproteobacteria/genética , Betaproteobacteria/ultraestrutura , Sítios de Ligação , Domínio Catalítico , Estabilidade Enzimática , Corpos de Inclusão/genética , Corpos de Inclusão/ultraestrutura , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
5.
J Environ Manage ; 295: 113050, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34198177

RESUMO

Oil palm trunks (OPT) are logged for replantation and the fiber residues are disposed of into the palm plantation area. The fiber residues are expected to increase soil fertility through recycling of carbon and minerals via fiber decomposition. This study investigated the effects of OPT fiber disposal and other lignocellulosic biomass on plant growth and microbial diversity in the soil environment. Four treatment plots were tested: (A) soil+OPT fiber (1:20), (B) soil+sugarcane bagasse (1:20), (C) soil+cellulose powder (1:20), and (D) unamended soil as a negative control. Low plant height, decreased chlorophyll content, and low biomass was observed in corn grown on soil mixed with OPT fiber, cellulose, and sugarcane bagasse, when compared with those of the control. The plants grown with OPT fiber were deficient in total nitrogen and magnesium when compared with those without fiber amendment, which suggested that nitrogen and minerals in soil might be taken up by changing microflora because of the OPT fibers presence. To confirm differences in the soil microflora, metagenomics analysis was performed on untreated soil and soil from each lignocellulose treatment. The microflora of soils mixed with OPT fiber, cellulose and sugarcane bagasse revealed substantial increases in bacteria such as families Cytophagaceae and Oscillospiraceae, and two major fungal genera, Trichoderma and Trichocladium, that are involved in lignocellulose degradation. OPT fiber resulted in a drastic increase in the ratios and amounts of Trichocladium in the soil when compared with those of cellulose and sugarcane bagasse. These results indicate that unregulated disposal of OPT fiber into plantation areas could result in nutrient loss from soil by increasing the abundance of microorganisms involved in lignocellulose decomposition.


Assuntos
Microbiota , Saccharum , Trichoderma , Biomassa , Humanos , Solo , Microbiologia do Solo
6.
Polymers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069008

RESUMO

Polyhydroxyalkanoate (PHA) is a biodegradable thermoplastic naturally synthesized by many microorganisms, and the PHA synthase (PhaC) is known to be the key enzyme involved in determining the material properties and monomer composition of the produced PHA. The ability to exploit widely distributed, commonly found soil microorganisms such as Azotobacter vinelandii to synthesize PHA containing the lipase-degradable 4-hydroxybutyrate (4HB) monomer will allow for convenient production of biocompatible and flexible PHA. Comparisons between the A. vinelandii wild type and mutant strains, with and without a surface layer (S-layer), respectively, in terms of gene or amino acid sequences, synthase activity, granule morphology, and PHA productivity, revealed that the S-layer is the sole factor affecting PHA biosynthesis by A. vinelandii. Based on PHA biosynthesis using different carbon sources, the PhaC of A. vinelandii showed specificity for short-chain-length PHA monomers, making it a member of the Class I PHA synthases. In addition, it was proven that the PhaC of A. vinelandii has the inherent ability to polymerize 4-hydroxybutyrate (4HB) and the mediated accumulation of PHA with 4HB fractions ranging from 10 mol% to as high as 22 mol%. The synthesis of biocompatible PHA containing tailorable amounts of 4HB with an expanded range of elasticity and lipase-degradability will enable a wider range of applications in the biomedical field.

7.
Int J Biol Macromol ; 145: 173-188, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31866541

RESUMO

Polyhydroxyalkanoates (PHAs) are biodegradable polyesters produced by microorganisms, under unbalanced growth conditions, as a carbon storage compound. PHAs are composed of various monomers such as 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx). Silk fibroin (SF) derived from Bombyx mori cocoons, is a widely studied protein polymer commonly used for biomaterial applications. In this study, non-woven electrospun films comprising a copolymer of 3HB and 3HHx [P(3HB-co-3HHx)], SF and their blends were prepared by electrospinning technique. The growth and osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were studied using different types of fabricated electrospun films. The differentiation study revealed that electrospun P(3HB-co-3HHx)/SF film supports the differentiation of hUC-MSCs into the osteogenic lineage, confirmed by histological analysis using Alizarin Red staining, energy dispersive X-ray (EDX) and quantitative real-time PCR analysis (qPCR). Electrospun P(3HB-co-3HHx)/SF film up-regulated the expression of osteogenic marker genes, alkaline phosphatase (ALP) and osteocalcin (OCN), by 1.6-fold and 2.8-fold respectively, after 21 days of osteogenic induction. In conclusion, proliferation and osteogenic differentiation of hUC-MSCs were enhanced through the blending of P(3HB-co-3HHx) and SF. The results from this study suggest that electrospun P(3HB-co-3HHx)/SF film is a promising biomaterial for bone tissue engineering.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Osso e Ossos/efeitos dos fármacos , Caproatos/farmacologia , Fibroínas/farmacologia , Animais , Materiais Biocompatíveis/farmacologia , Bombyx/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Poliésteres/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais
8.
Adv Sci (Weinh) ; 6(23): 1902064, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832328

RESUMO

The plastid is an organelle that functions as a cell factory to supply food and oxygen to the plant cell and is therefore a potential target for genetic engineering to acquire plants with novel photosynthetic traits or the ability to produce valuable biomolecules. Conventional plastid genome engineering technologies are laborious for the preparation of plant material, require expensive experimental instruments, and are time consuming for obtaining a transplastomic plant line that produces significant levels of the biomolecule of interest. Herein, a transient plastid transformation technique is presented using a peptide-based gene carrier. By formulating peptide/plasmid DNA complexes that combine the functions of both a cell-penetrating peptide and a chloroplast-targeting peptide, DNA molecules are translocated across the plant cell membrane and delivered to the plastid efficiently via vesicle formation and intracellular vesicle trafficking. A simple infiltration method enables the introduction of a complex solution into intact plants, and plastid-localized transgene expression is expeditiously observed in various types of plastids in differentiated cell types of several plants. The gene delivery technology thus provides a useful tool to rapidly engineer plastids in crop species.

9.
Biomacromolecules ; 19(4): 1154-1163, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29498835

RESUMO

For efficient gene delivery in plant systems, nonviral vector and DNA complexes require extracellular stability, cell wall/membrane translocation capability, and the ability to mediate both endosomal escape and intracellular DNA release. Peptides make appealing gene delivery vectors due to their DNA-binding, cell-penetrating, and endosome escape properties. However, DNA release within cells has so far been inefficient, which results in poor and delayed gene expression, while the lack of understanding of both internalization and trafficking mechanisms is a further obstacle to the design of efficient peptide gene delivery vectors. Here, we report successful gene delivery into plants using a cellular environment-responsive vector, BPCH7, which is an efficient cell-penetrating peptide with a cyclic DNA-binding domain that is formed by a disulfide bond between two cysteines. The cyclic structure of BPCH7 confers high avidity attachment to DNA in vitro. Following endocytosis into cells, disulfide bond cleavage facilitated by intracellular glutathione induces structural changes within BPCH7 that enable the release of the associated DNA cargo. Comparative studies with BPKH, a cell-penetrating peptide with a linear DNA-binding domain, show that BPCH7 maximized and expedited gene transfer in cells and unveil for the first time the crucial role of plant stomata in the internalization of peptide-DNA complexes.


Assuntos
Peptídeos Penetradores de Células/genética , DNA/genética , Técnicas de Transferência de Genes , Plantas Geneticamente Modificadas/genética , Parede Celular/genética , Peptídeos Penetradores de Células/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Vetores Genéticos/química , Vetores Genéticos/genética
10.
Biomacromolecules ; 19(5): 1582-1591, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29601191

RESUMO

Selective gene delivery into organellar genomes (mitochondrial and plastid genomes) has been limited because of a lack of appropriate platform technology, even though these organelles are essential for metabolite and energy production. Techniques for selective organellar modification are needed to functionally improve organelles and produce transplastomic/transmitochondrial plants. However, no method for mitochondrial genome modification has yet been established for multicellular organisms including plants. Likewise, modification of plastid genomes has been limited to a few plant species and algae. In the present study, we developed ionic complexes of fusion peptides containing organellar targeting signal and plasmid DNA for selective delivery of exogenous DNA into the plastid and mitochondrial genomes of intact plants. This is the first report of exogenous DNA being integrated into the mitochondrial genomes of not only plants, but also multicellular organisms in general. This fusion peptide-mediated gene delivery system is a breakthrough platform for both plant organellar biotechnology and gene therapy for mitochondrial diseases in animals.


Assuntos
DNA/genética , Genoma de Cloroplastos , Genoma Mitocondrial , Sinais Direcionadores de Proteínas , Transfecção/métodos , Arabidopsis/genética , DNA/química , Nicotiana/genética
11.
ACS Biomater Sci Eng ; 4(8): 2815-2824, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30911674

RESUMO

Bombyx mori-derived silk fibroin (SF) is a well-characterized protein employed in numerous biomedical applications. Structurally, SF consists of a heavy chain (HC) and a light chain (LC), connected via a single disulfide bond. The HC sequence is organized into 12 crystalline domains interspersed with amorphous regions that can transition between random coil/alpha helix and beta-sheet configurations, giving silk its hallmark properties. SF has been reported to have adhesive properties and shows promise for development of medical adhesives; however, the mechanism of these interactions and the interplay between SF's structure and adhesion is not understood. In this context, the effects of physical parameters (i.e., concentration, temperature, pH, ionic strength) and protein structural changes on adhesion were investigated in this study. Our results suggest that amino acid side chains that have functionalities capable of coordinate (dative) bond or hydrogen bond formation (such as those of serine and tyrosine), might be important determinants in SF's adhesion to a given substrate. Additionally, the data suggest that fibroin amino acids involved in beta-sheet formation are also important in the protein's adhesion to substrates.

12.
ACS Biomater Sci Eng ; 3(12): 3064-3075, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33445351

RESUMO

Polyhydroxyalkanoates (PHAs) are biopolyesters that have been studied as tissue engineering materials because of their biodegradability, biocompatibility, and low cytotoxicity. In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-2,3-dihydroxybutyrate) [PHBVDB] containing hydroxyl groups was produced by recombinant Ralstonia eutropha. R. eutropha were constructed to express the propionate-coenzymeA transferase (pct) gene from Megasphaera elsdenii, and glycolate was used as the carbon source. Disruption of phaA encoding ß-ketothiolase in the phaCAB operon increased 2,3-dihydroxybutyrate (2,3-DHBA) compositions to 3 mol %. The PHBVDB film showed a lower water contact angle compared with other PHA films, indicating increased hydrophilicity due to the hydroxyl groups. The mechanical properties of the PHBVDB scaffold met the requirements for a soft tissue matrix. The effect of hydroxyl groups on cytotoxicity was evaluated with human mesenchymal stem cells. Results of cell proliferation and live/dead assays showed that the PHBVDB scaffold did not exhibit significant cytotoxicity toward the cells. These results indicate that PBVDB containing hydroxyl groups could be applied as a hydrophilicity-controlled scaffold for soft tissue engineering.

13.
Biomacromolecules ; 17(11): 3547-3557, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27696822

RESUMO

Human mitochondrial dysfunction can lead to severe and often deadly diseases, for which there are no known cures. Although the targeted delivery of therapeutic gene to mitochondria is a promising approach to alleviate these disorders, gene carrier systems for the selective delivery of functional DNA into the mitochondria of living mammalian cells are currently unavailable. Here we rationally developed dual-domain peptides containing DNA-condensing/cell-penetrating/endosome-disruptive and mitochondria-targeting sequences. Secondary structures of the dual-domain peptides were analyzed, and variations in the physicochemical properties (stability, size, and ζ potential) of peptide/DNA complexes were studied as a function of peptide-to-DNA ratio and serum addition. An optimized formulation, identified through qualitative and quantitative studies, fulfills the fundamental prerequisites for mitochondria-specific DNA delivery, successfully transfecting a high proportion (82 ± 2%) of mitochondria in a human cell line with concomitant biocompatibility. Nuclear magnetic resonance studies confirmed the effectiveness of our bipartite peptide design with segregated functions: a helical domain necessary for mitochondrial import and an unstructured region for interaction with DNA involving lysine residues. Further analyses revealed that the lysine-specific interaction assisted the self-organization of the peptide and the DNA cargo, leading to a structural arrangement within the formed complex that is crucial for its biological efficiency. Thus the reported gene vector represents a new and reliable tool to uncover the complexity of mitochondrial transfection.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Mitocôndrias/genética , Peptídeos/genética , Endossomos/química , Endossomos/genética , Vetores Genéticos , Humanos , Mitocôndrias/patologia , Peptídeos/química , Transfecção
14.
Biomacromolecules ; 17(10): 3375-3385, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27642764

RESUMO

Amyloid fibers are classified as a new generation of tunable bionanomaterials that exhibit new functions related to their distinctive characteristics, such as their universality, tunability, and stiffness. Here, we introduce the catalytic residues of serine protease into a peptide catalyst (PC) via an enzyme-mimic approach. The rational design of a repeating pattern of polar and nonpolar amino acids favors the conversion of the peptides into amyloid-like fibrils via self-assembly. Distinct fibrous morphologies have been observed at different pH values and temperatures, which indicates that different fibril packing schemes can be designed; hence, fibrillar peptides can be used to generate efficient artificial catalysts for amidolytic activities at mild pH values. The results of atomic force microscopy, Raman spectroscopy, and wide-angle X-ray scattering analyses are used to discuss and compare the fibril structure of a fibrillar PC with its amidolytic activity. The pH of the fibrillation reaction crucially affects the pKa of the side chains of the catalytic triads and is important for stable fibril formation. Temperature is another important parameter that controls the self-assembly of peptides into highly stacked and laminated morphologies. The morphology and stability of fibrils are crucial and represent important factors for demonstrating the capability of the peptides to exert amidolytic activity. The observed amidolytic activity of PC4, one of the PCs, was validated using an inhibition assay, which revealed that PC4 can perform enzyme-like amidolytic catalysis. These results provide insights into the potential use of designed peptides in the generation of efficient artificial enzymes.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Nanoestruturas/química , Sequência de Aminoácidos , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/ultraestrutura , Catálise , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Nanoestruturas/ultraestrutura , Estrutura Secundária de Proteína , Serina Proteases/química , Análise Espectral Raman , Temperatura
15.
J Vis Exp ; (118)2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-28060264

RESUMO

The capacity to introduce exogenous proteins and express (or down-regulate) specific genes in plants provides a powerful tool for fundamental research as well as new applications in the field of plant biotechnology. Viable methods that currently exist for protein or gene transfer into plant cells, namely Agrobacterium and microprojectile bombardment, have disadvantages of low transformation frequency, limited host range, or a high cost of equipment and microcarriers. The following protocol outlines a simple and versatile method, which employs rationally-designed peptides as delivery agents for a variety of nucleic acid- and protein-based cargoes into plants. Peptides are selected as tools for development of the system due to their biodegradability, reduced size, diverse and tunable properties as well as the ability to gain intracellular/organellar access. The preparation, characterization and application of optimized formulations for each type of the wide range of delivered cargoes (plasmid DNA, double-stranded DNA or RNA, and protein) are described. Critical steps within the protocol, possible modifications and existing limitations of the method are also discussed.


Assuntos
Plantas/metabolismo , Biotecnologia , Peptídeos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plasmídeos
16.
Macromol Biosci ; 15(7): 990-1003, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25828913

RESUMO

Cationic peptides such as poly(l-lysine) and poly(l-arginine) are important tools for gene delivery since they can efficiently condense DNA. It is difficult to produce cationic peptides by recombinant bacterial expression, and its chemical synthesis requires several steps of protection/deprotection and toxic agents. Chemo-enzymatic synthesis of peptides is a clean chemistry technique that allows fast production under mild conditions. With the aim to simplify the production of cationic peptides, the present work develops an enzymatic reaction which enables the synthesis of linear cationic peptides and, through terminal functionalization with tris(2-aminoethyl)amine, of branched cationic peptide conjugates, which show improved DNA complex formation. Cytotoxicity and transfection efficiency of all the chemo-enzymatically synthesized cationic peptides are evaluated for their novel use as gene delivery agents. Synthesized peptides exhibit transfection efficiencies comparable to previously reported monodisperse peptides. Chemo-enzymatic synthesis opens the door for efficient production of cationic peptides for their use as gene delivery carriers.


Assuntos
DNA/química , Etilenodiaminas/química , Técnicas de Transferência de Genes , Peptídeos/síntese química , Cátions , Humanos , Peptídeos/química , Transfecção
17.
Sci Rep ; 5: 7751, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25583214

RESUMO

Available methods in plant genetic transformation are nuclear and plastid transformations because similar procedures have not yet been established for the mitochondria. The double membrane and small size of the organelle, in addition to its large population in cells, are major obstacles in mitochondrial transfection. Here we report the intracellular delivery of exogenous DNA localized to the mitochondria of Arabidopsis thaliana using a combination of mitochondria-targeting peptide and cell-penetrating peptide. Low concentrations of peptides were sufficient to deliver DNA into the mitochondria and expression of imported DNA reached detectable levels within a short incubation period (12 h). We found that electrostatic interaction with the cell membrane is not a critical factor for complex internalization, instead, improved intracellular penetration of mitochondria-targeted complexes significantly enhanced gene transfer efficiency. Our results delineate a simple and effective peptide-based method, as a starting point for the development of more sophisticated plant mitochondrial transfection strategies.


Assuntos
Arabidopsis/genética , Técnicas de Transferência de Genes , Genes de Plantas , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Transformação Genética , Sequência de Aminoácidos , Western Blotting , Peptídeos Penetradores de Células/metabolismo , DNA de Plantas/metabolismo , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Plasmídeos/metabolismo
18.
Macromol Biosci ; 14(6): 799-806, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24610718

RESUMO

A new method is developed to prepare silk hydrogels and silk-pectin hydrogels via dialysis against methanol to obtain hydrogels with high concentrations of silk fibroin. The relationship between the mechanical and biological properties and the structure of the silk-pectin hydrogels is subsequently evaluated. The present results suggest that pectin associates with silk molecules when the silk concentration exceeds 15 wt%, suggesting that a silk concentration of over 15 wt% is critical to construct interacting silk-pectin networks. The silk-pectin hydrogel reported here is composed of a heterogeneous network, which is different from fiber-reinforced, interpenetrated networks and double-network hydrogels, as well as high-stiffness hydrogels (elastic modulus of 4.7 ± 0.9 MPa, elastic stress limit of 3.9 ± 0.1 MPa, and elastic strain limit of 48.4 ± 0.5%) with regard to biocompatibility and biodegradability.


Assuntos
Hidrogéis/química , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Pectinas/química , Seda/química , Linhagem Celular , Humanos , Células-Tronco Mesenquimais/citologia
19.
Appl Environ Microbiol ; 79(12): 3813-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584780

RESUMO

Saturation point mutagenesis was carried out at position 479 in the polyhydroxyalkanoate (PHA) synthase from Chromobacterium sp. strain USM2 (PhaC(Cs)) with specificities for short-chain-length (SCL) [(R)-3-hydroxybutyrate (3HB) and (R)-3-hydroxyvalerate (3HV)] and medium-chain-length (MCL) [(R)-3-hydroxyhexanoate (3HHx)] monomers in an effort to enhance the specificity of the enzyme for 3HHx. A maximum 4-fold increase in 3HHx incorporation and a 1.6-fold increase in PHA biosynthesis, more than the wild-type synthase, was achieved using selected mutant synthases. These increases were subsequently correlated with improved synthase activity and increased preference of PhaC(Cs) for 3HHx monomers. We found that substitutions with uncharged residues were beneficial, as they resulted in enhanced PHA production and/or 3HHx incorporation. Further analysis led to postulations that the size and geometry of the substrate-binding pocket are determinants of PHA accumulation, 3HHx fraction, and chain length specificity. In vitro activities for polymerization of 3HV and 3HHx monomers were consistent with in vivo substrate specificities. Ultimately, the preference shown by wild-type and mutant synthases for either SCL (C(4) and C(5)) or MCL (C(6)) substrates substantiates the fundamental classification of PHA synthases.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Chromobacterium/enzimologia , Poli-Hidroxialcanoatos/biossíntese , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/métodos , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade por Substrato
20.
Microbiol Res ; 167(9): 550-7, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22281521

RESUMO

In this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182 bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738 bp) and PHA synthase, class I (phaC(Co) gene, 1694 bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co)) were successfully cloned in a heterologous host, Escherichia coli JM109. E. coli JM109 transformants harbouring pGEM'-phaC(Co)AB(Re) and pGEM'-phaC(Re)AB(Co) were shown to be functionally active synthesising 33 wt.% and 17 wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coli JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp. EB172 (phaCAB(Co)) under the control of native promoter from Cupriavidus necator, in vivo polymerised P(3HB) when fed with glucose and volatile mixed organic acids (acetic acid:propionic acid:n-butyric acid) in ration of 3:1:1, respectively. The E. coli JM109 transformant harbouring phaCAB(Co) could accumulate P(3HB) at 2g/L of propionic acid. P(3HB) contents of 40.9% and 43.6% were achieved by using 1% of glucose and mixed organic acids, respectively.


Assuntos
Acetil-CoA C-Acetiltransferase/genética , Aciltransferases/genética , Oxirredutases do Álcool/genética , Proteínas de Bactérias/genética , Comamonas/enzimologia , Escherichia coli/genética , Expressão Gênica , Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/metabolismo , Aciltransferases/química , Aciltransferases/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Comamonas/química , Comamonas/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Hidroxibutiratos/metabolismo , Dados de Sequência Molecular , Óperon , Poliésteres/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...