Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2320222121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954542

RESUMO

Artificial skins or flexible pressure sensors that mimic human cutaneous mechanoreceptors transduce tactile stimuli to quantitative electrical signals. Conventional trial-and-error designs for such devices follow a forward structure-to-property routine, which is usually time-consuming and determines one possible solution in one run. Data-driven inverse design can precisely target desired functions while showing far higher productivity, however, it is still absent for flexible pressure sensors because of the difficulties in acquiring a large amount of data. Here, we report a property-to-structure inverse design of flexible pressure sensors, exhibiting a significantly greater efficiency than the conventional routine. We use a reduced-order model that analytically constrains the design scope and an iterative "jumping-selection" method together with a surrogate model that enhances data screening. As an exemplary scenario, hundreds of solutions that overcome the intrinsic signal saturation have been predicted by the inverse method, validating for a variety of material systems. The success in property design on multiple indicators demonstrates that the proposed inverse design is an efficient and powerful tool to target multifarious applications of flexible pressure sensors, which can potentially advance the fields of intelligent robots, advanced healthcare, and human-machine interfaces.

2.
Sci Transl Med ; 16(752): eado9003, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896601

RESUMO

Current clinically used electronic implants, including cardiac pacing leads for epicardial monitoring and stimulation of the heart, rely on surgical suturing or direct insertion of electrodes to the heart tissue. These approaches can cause tissue trauma during the implantation and retrieval of the pacing leads, with the potential for bleeding, tissue damage, and device failure. Here, we report a bioadhesive pacing lead that can directly interface with cardiac tissue through physical and covalent interactions to support minimally invasive adhesive implantation and gentle on-demand removal of the device with a detachment solution. We developed 3D-printable bioadhesive materials for customized fabrication of the device by graft-polymerizing polyacrylic acid on hydrophilic polyurethane and mixing with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to obtain electrical conductivity. The bioadhesive construct exhibited mechanical properties similar to cardiac tissue and strong tissue adhesion, supporting stable electrical interfacing. Infusion of a detachment solution to cleave physical and covalent cross-links between the adhesive interface and the tissue allowed retrieval of the bioadhesive pacing leads in rat and porcine models without apparent tissue damage. Continuous and reliable cardiac monitoring and pacing of rodent and porcine hearts were demonstrated for 2 weeks with consistent capture threshold and sensing amplitude, in contrast to a commercially available alternative. Pacing and continuous telemetric monitoring were achieved in a porcine model. These findings may offer a promising platform for adhesive bioelectronic devices for cardiac monitoring and treatment.


Assuntos
Marca-Passo Artificial , Animais , Suínos , Ratos , Monitorização Fisiológica/métodos , Ratos Sprague-Dawley , Eletrodos Implantados , Adesivos , Impressão Tridimensional , Modelos Animais
3.
Adv Mater ; : e2404369, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38938165

RESUMO

By incorporating soft materials into the architecture, flexible mechanical metamaterials enable promising applications, e.g., energy modulation, and shape morphing, with a well-controllable mechanical response, but suffer from spatial and temporal programmability towards higher-level mechanical intelligence. One feasible solution is to introduce snapping structures and then tune their responses by accurately tailoring the stress-strain curves. However, owing to the strongly coupled nonlinearity of structural deformation and material constitutive model, it is difficult to deduce their stress-strain curves using conventional ways. Here, a machine learning pipeline is trained with the finite element analysis data that considers those strongly coupled nonlinearities to accurately tailor the stress-strain curves of snapping metamaterialfor on-demand mechanical response with an accuracy of 97.41%, conforming well to experiment. Utilizing the established approach, the energy absorption efficiency of the snapping-metamaterial-based device can be tuned within the accessible range to realize different rebound heights of a falling ball, and soft actuators can be spatially and temporally programmed to achieve synchronous and sequential actuation with a single energy input. Purely relying on structure designs, the accurately tailored metamaterials increase the devices' tunability/programmability. Such an approach can potentially extend to similar nonlinear scenarios towards predictable or intelligent mechanical responses.

4.
ACS Nano ; 18(22): 14672-14684, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38760182

RESUMO

Flexible sensing systems (FSSs) designed to measure plantar pressure can deliver instantaneous feedback on human movement and posture. This feedback is crucial not only for preventing and controlling diseases associated with abnormal plantar pressures but also for optimizing athletes' postures to minimize injuries. The development of an optimal plantar pressure sensor hinges on key metrics such as a wide sensing range, high sensitivity, and long-term stability. However, the effectiveness of current flexible sensors is impeded by numerous challenges, including limitations in structural deformability, mechanical incompatibility between multifunctional layers, and instability under complex stress conditions. Addressing these limitations, we have engineered an integrated pressure sensing system with high sensitivity and reliability for human plantar pressure and gait analysis. It features a high-modulus, porous laminated ionic fiber structure with robust self-bonded interfaces, utilizing a unified polyimide material system. This system showcases a high sensitivity (156.6 kPa-1), an extensive sensing range (up to 4000 kPa), and augmented interfacial toughness and durability (over 150,000 cycles). Additionally, our FSS is capable of real-time monitoring of plantar pressure distribution across various sports activities. Leveraging deep learning, the flexible sensing system achieves a high-precision, intelligent recognition of different plantar types with a 99.8% accuracy rate. This approach provides a strategic advancement in the field of flexible pressure sensors, ensuring prolonged stability and accuracy even amidst complex pressure dynamics and providing a feasible solution for long-term gait monitoring and analysis.


Assuntos
Pressão , Humanos , Análise da Marcha/instrumentação , Análise da Marcha/métodos , Dispositivos Eletrônicos Vestíveis , Marcha/fisiologia , Pé/fisiologia
5.
Natl Sci Rev ; 11(6): nwae050, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38707205

RESUMO

High intraocular pressure (IOP) is one of the high-risk pathogenic factors of glaucoma. Existing methods of IOP measurement are based on the direct interaction with the cornea. Commercial ophthalmic tonometers based on snapshot measurements are expensive, bulky, and their operation requires trained personnel. Theranostic contact lenses are easy to use, but they may block vision and cause infection. Here, we report a sensory system for IOP assessment that uses a soft indentor with two asymmetrically deployed iontronic flexible pressure sensors to interact with the eyelid-eyeball in an eye-closed situation. Inspired by human fingertip assessment of softness, the sensory system extracts displacement-pressure information for soft evaluation, achieving high accuracy IOP monitoring (>96%). We further design and custom-make a portable and wearable ophthalmic tonometer based on the sensory system and demonstrate its high efficacy in IOP screening. This sensory system paves a way towards cost-effective, robust, and reliable IOP monitoring.

6.
Nat Commun ; 15(1): 3048, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589497

RESUMO

Flexible pressure sensors can convert mechanical stimuli to electrical signals to interact with the surroundings, mimicking the functionality of the human skins. Piezocapacitive pressure sensors, a class of most widely used devices for artificial skins, however, often suffer from slow response-relaxation speed (tens of milliseconds) and thus fail to detect dynamic stimuli or high-frequency vibrations. Here, we show that the contact-separation behavior of the electrode-dielectric interface is an energy dissipation process that substantially determines the response-relaxation time of the sensors. We thus reduce the response and relaxation time to ~0.04 ms using a bonded microstructured interface that effectively diminishes interfacial friction and energy dissipation. The high response-relaxation speed allows the sensor to detect vibrations over 10 kHz, which enables not only dynamic force detection, but also acoustic applications. This sensor also shows negligible hysteresis to precisely track dynamic stimuli. Our work opens a path that can substantially promote the response-relaxation speed of piezocapacitive pressure sensors into submillisecond range and extend their applications in acoustic range.

7.
Nat Mater ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514845

RESUMO

Artificial pressure sensors often use soft materials to achieve skin-like softness, but the viscoelastic creep of soft materials and the ion leakage, specifically for ionic conductors, cause signal drift and inaccurate measurement. Here we report drift-free iontronic sensing by designing and copolymerizing a leakage-free and creep-free polyelectrolyte elastomer containing two types of segments: charged segments having fixed cations to prevent ion leakage and neutral slippery segments with a high crosslink density for low creep. We show that an iontronic sensor using the polyelectrolyte elastomer barely drifts under an ultrahigh static pressure of 500 kPa (close to its Young's modulus), exhibits a drift rate two to three orders of magnitude lower than that of the sensors adopting conventional ionic conductors and enables steady and accurate control for robotic manipulation. Such drift-free iontronic sensing represents a step towards highly accurate sensing in robotics and beyond.

8.
Nano Lett ; 24(13): 4012-4019, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527220

RESUMO

The measurement of in-plane mechanical properties, such as Young's modulus and strength, of thin and stretchable materials has long been a challenge. Existing measurements, including wrinkle instability and nano indentation, are either indirect or destructive, and are inapplicable to meshes or porous materials, while the conventional tension test fails to measure the mechanical properties of nanoscale films. Here, we report a technique to test thin and stretchable films by loading a thin film afloat via differential surface tension and recording its deformation. We have demonstrated the method by measuring the Young's moduli of homogeneous films of soft materials including polydimethylsiloxane and Ecoflex and verified the results with known values. We further measured the strain distributions of meshes, both isotropic and anisotropic, which were otherwise nearly impossible to measure. The method proposed herein is expected to be generally applicable to many material systems that are thin, stretchable, and water-insoluble.

9.
Signal Transduct Target Ther ; 9(1): 33, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369543

RESUMO

Pyrogen, often as a contaminant, is a key indicator affecting the safety of almost all parenteral drugs (including biologicals, chemicals, traditional Chinese medicines and medical devices). It has become a goal to completely replace the in vivo rabbit pyrogen test by using the in vitro pyrogen test based on the promoted 'reduction, replacement and refinement' principle, which has been highly considered by regulatory agencies from different countries. We used NF-κB, a central signalling molecule mediating inflammatory responses, as a pyrogenic marker and the monocyte line THP-1 transfected with a luciferase reporter gene regulated by NF-κB as an in vitro model to detect pyrogens by measuring the intensity of a fluorescence signal. Here, we show that this test can quantitatively and sensitively detect endotoxin (lipopolysaccharide from different strains) and nonendotoxin (lipoteichoic acid, zymosan, peptidoglycan, lectin and glucan), has good stability in terms of NF-κB activity and cell phenotypes at 39 cell passages and can be applied to detect pyrogens in biologicals (group A & C meningococcal polysaccharide vaccine; basiliximab; rabies vaccine (Vero cells) for human use, freeze-dried; Japanese encephalitis vaccine (Vero cells), inactivated; insulin aspart injection; human albumin; recombinant human erythropoietin injection (CHO Cell)). The within-laboratory reproducibility of the test in three independent laboratories was 85%, 80% and 80% and the interlaboratory reproducibility among laboratories was 83.3%, 95.6% and 86.7%. The sensitivity (true positive rate) and specificity (true negative rate) of the test were 89.9% and 90.9%, respectively. In summary, the test provides a novel alternative for pyrogen detection.


Assuntos
NF-kappa B , Pirogênios , Animais , Chlorocebus aethiops , Coelhos , Humanos , Pirogênios/farmacologia , Pirogênios/química , Células Vero , Reprodutibilidade dos Testes , Linhagem Celular
10.
Nat Commun ; 14(1): 7121, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963866

RESUMO

Humans can gently slide a finger on the surface of an object and identify it by capturing both static pressure and high-frequency vibrations. Although modern robots integrated with flexible sensors can precisely detect pressure, shear force, and strain, they still perform insufficiently or require multi-sensors to respond to both static and high-frequency physical stimuli during the interaction. Here, we report a real-time artificial sensory system for high-accuracy texture recognition based on a single iontronic slip-sensor, and propose a criterion-spatiotemporal resolution, to corelate the sensing performance with recognition capability. The sensor can respond to both static and dynamic stimuli (0-400 Hz) with a high spatial resolution of 15 µm in spacing and 6 µm in height, together with a high-frequency resolution of 0.02 Hz at 400 Hz, enabling high-precision discrimination of fine surface features. The sensory system integrated on a prosthetic fingertip can identify 20 different commercial textiles with a 100.0% accuracy at a fixed sliding rate and a 98.9% accuracy at random sliding rates. The sensory system is expected to help achieve subtle tactile sensation for robotics and prosthetics, and further be applied to haptic-based virtual reality and beyond.

11.
Inflammation ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37985573

RESUMO

Ulcerative colitis, an inflammatory bowel disease, manifests with symptoms such as abdominal pain, diarrhea, and mucopurulent feces. The long non-coding RNA (lncRNA) ANRIL exhibits significantly reduced expression in UC, yet its specific mechanism is unknown. This study revealed that ANRIL is involved in the progression of UC by inhibiting IL-6 and TNF-α via miR-191-5P/SATB1 axis. We found that in patients with UC, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were significantly overexpressed in inflamed colon sites, whereas ANRIL was significantly under-expressed and associated with disease severity. The downregulation of ANRIL resulted in the increased expression of IL-6 and TNF-α in LPS-treated FHCs. ANRIL directly targeted miR-191-5p, thereby inhibiting its expression and augmenting SATB1 expression. Moreover, overexpression of miR-191-5p abolished ANRIL-mediated inhibition of IL-6 and TNF-α production. Dual luciferase reporter assays revealed the specific binding of miR-191-5p to ANRIL and SATB1. Furthermore, the downregulation of ANRIL promoted DSS-induced colitis in mice. Together, we provide evidence that ANRIL plays a critical role in regulating IL-6 and TNF-α expression in UC by modulating the miR-191-5p/SATB1 axis. Our study provides novel insights into progression and molecular therapeutic strategies in UC.

12.
Adv Healthc Mater ; 12(29): e2301838, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602671

RESUMO

Arteriosclerosis, which appears as a hardened and narrowed artery with plaque buildup, is the primary cause of various cardiovascular diseases such as stroke. Arteriosclerosis is often evaluated by clinically measuring the pulse wave velocity (PWV) using a two-point approach that requires bulky medical equipment and a skilled operator. Although wearable photoplethysmographic sensors for PWV monitoring are developed in recent years, likewise, this technique is often based on two-point measurement, and the signal can easily be interfered with by natural light. Herein, a single-point strategy is reported based on stable fingertip pulse monitoring using a flexible iontronic pressure sensor for heart-fingertip PWV (hfPWV) measurement. The iontronic sensor exhibits a high pressure-resolution on the order of 0.1 Pa over a wide linearity range, allowing the capture of characteristic peaks of fingertip pulse waves. The forward and reflected waves of the pulse are extracted and the time difference between the two waves is computed for hfPWV measurement using Hiroshi's method. Furthermore, a hfPWV-based model is established for arteriosclerosis evaluation with an accuracy comparable to that of existing clinical criteria, and the validity of the model is verified clinically. The work provides a reliable technique that can be used in wearable arteriosclerosis assessment systems.


Assuntos
Arteriosclerose , Doenças Cardiovasculares , Dispositivos Eletrônicos Vestíveis , Humanos , Análise de Onda de Pulso , Arteriosclerose/diagnóstico , Monitorização Fisiológica
13.
Sci Adv ; 9(9): eadf8831, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867698

RESUMO

Iontronic pressure sensors are promising in robot haptics because they can achieve high sensing performance using nanoscale electric double layers (EDLs) for capacitive signal output. However, it is challenging to achieve both high sensitivity and high mechanical stability in these devices. Iontronic sensors need microstructures that offer subtly changeable EDL interfaces to boost sensitivity, while the microstructured interfaces are mechanically weak. Here, we embed isolated microstructured ionic gel (IMIG) in a hole array (28 × 28) of elastomeric matrix and cross-link the IMIGs laterally to achieve enhanced interfacial robustness without sacrificing sensitivity. The embedded configuration toughens and strengthens the skin by pinning cracks and by the elastic dissipation of the interhole structures. Furthermore, cross-talk between the sensing elements is suppressed by isolating the ionic materials and by designing a circuit with a compensation algorithm. We have demonstrated that the skin is potentially useful for robotic manipulation tasks and object recognition.

14.
ACS Nano ; 17(6): 5211-5295, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36892156

RESUMO

Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Qualidade de Vida
15.
Nano Lett ; 23(4): 1371-1378, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36735577

RESUMO

Pottery is the oldest art and plays a landmark role in human civilization. The repair of ceramic relics often uses acrylic resins and cyanoacrylate adhesives. However, existing adhesives often take hours to get cured, and wet adhesion is not possible. We herein propose a redox initiator-triggered hydrogel adhesive, of which robust (∼700 J m-2) and wet adhesion with potsherds can be achieved within a few seconds. The high toughness lies in the self-limited delocalized rupture of the porous interface, and the wet adhesion is due to the hydrophilic precursor and its free radical polymerization. The hydrogel adhesive also exhibits high aging resistance for stable preservation of ∼400 annuals. We have applied the adhesive to the restoration of artifacts excavated from Yinxu, Anyang (∼1300 BC) and the Xia Jiao Shan site (∼4000 BC, Neolithic), and the adhesive is expected to be extended to applications beyond archeology.

16.
J Med Chem ; 66(1): 371-383, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36598095

RESUMO

Inadequate bioavailability is one of the most critical reasons for the failure of oral drug development. However, the way that substructures affect bioavailability remains largely unknown. Serotonin transporter (SERT) inhibitors are first-line drugs for major depression disorder, and improving their bioavailability may be able to decrease side-effects by reducing daily dose. Thus, it is an excellent model to probe the relationship between substructures and bioavailability. Here, we proposed the concept of "nonbioavailable substructures", referring to substructures that are unfavorable to bioavailability. A machine learning model was developed to identify nonbioavailable substructures based on their molecular properties and shows the accuracy of 83.5%. A more potent SERT inhibitor DH4 was discovered with a bioavailability of 83.28% in rats by replacing the nonbioavailable substructure of approved drug vilazodone. DH4 exhibits promising anti-depression efficacy in animal experiments. The concept of nonbioavailable substructures may open up a new venue for the improvement of drug bioavailability.


Assuntos
Transtorno Depressivo Maior , Proteínas da Membrana Plasmática de Transporte de Serotonina , Ratos , Animais , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Disponibilidade Biológica , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico
17.
Acta Pharmaceutica Sinica ; (12): 2047-2058, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-999118

RESUMO

The in vitro transcribed (IVT) mRNA technology has progressed rapidly and the application of mRNA vaccines in the COVID-19 pandemic made it become the most talked-about topic. Compared with protein drugs, IVT mRNA has a lower cost; it can be modular produced and its sequence can be modified easily, so it has a broad application prospect. However, due to its short history, mRNA drugs face the problem of lacking sufficient clinical data, and there is no quality control standard for mRNA drugs except mRNA vaccines. We overview the sequence design, delivery vectors, administration, application prospect and safety considerations of mRNA drugs. We also discussed the quality control of mRNA drugs briefly.

18.
China Tropical Medicine ; (12): 347-2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-979684

RESUMO

@#Abstract: Objective To investigate the composition and diversity of midgut microbial community of Haemaphysalis longicornis infected with severe fever with thrombocytopenia syndrome virus (SFTSV). Methods The midgut DNA of three group Haemaphysalis longicornis infected with SFTSV was extracted, and the 16S rDNA gene of the sample was sequenced by HiSeq platform. The composition and diversity of endosymbiotic microbial community were clarified by OTU cluster analysis and alpha diversity analysis. Results The midgut microbial clusters of the three groups infected with SFTSV were 143, 113, 163 OTUs respectively; the sparsity curve and abundance grade curve showed that the data had sufficient sequencing depth, and the midgut of Haemaphysalis longicornis infected with SFTSV was rich in microbial composition, but the species distribution was uneven. The analysis of microbial community composition showed that Proteobacteria, Firmicutes and Actinobacteria were the main dominant bacteria at the phyla level. At the class level, Gammaproteobacteria, Bacilli, Betaproteobacteria and Actinomycetia were the main dominant bacteria. At the order level, Legionellales, Bacillales, Burkholderiales and Actinomycetales were the main dominant orders. At the family level, Coxiellaceae, Bacillaceae, Moraxellaceae and Rhodococcaceae were the main dominant families. At the genus level, the relative abundance of Coxiella was the highest, followed by Aeribaillus and Azonexus. Alpha diversity analysis showed that the average Shannon index was 139.67, the average Simpson index was 0.48, the average Chao index was 145.06, and the average ACE index was 147.11. Conclusions The species diversity of intestinal microorganisms in Haemaphysalis longicornis infected with SFTSV is rich. The results provide a basis for further exploring the interaction between intestinal microbes of Haemaphysalis longicornis and SFTSV and developing new ideas for the prevention and control of ticks and tick-borne diseases.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36282010

RESUMO

With the confrontation of ever increasing complicated working objects and unstructured environments, it is necessary for soft robots to be equipped with diverse intelligent mechanical structures, for example, anisotropically motorial bulk and timely proprio/exteroceptive sensing with programmable morphologies. Owing to abundant pores inside, porous media are promising to host various intelligent functions as interfaces/structures of robots yet challenging because of a limited anisotropic response inherited from a random hierarchical pore distribution. Here, an electron competition between Ga, N, and Pt is found and used to tune the polymerization of a gradient liquid alloy and NH4HCO3-suspended silicone precursor mixture and, thus, decompose gas movements in gradient pore formation under high-temperature heating (120 °C). By such a competition-collaboration effect, we present here an interconnected gradient porous structure (GPS) that can serve as an anisotropically robotic motorial bulk. Moreover, the mechanical stiffness and piezoresistive/capacitive property of GPS can be further tuned and reconfigured via so-called self-sucked coating, following solvent erasing. Such new structures provide a dynamic tactile recognition with an ultrabroad sensing range (from 135 Pa to 2.3 MPa) and a reconfigurable biomimetic elephant trunk with monolithic proprioceptive sensing-integrated bulks.

20.
Nat Biomed Eng ; 6(10): 1118-1133, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35788686

RESUMO

Diabetic foot ulcers and other chronic wounds with impaired healing can be treated with bioengineered skin or with growth factors. However, most patients do not benefit from these treatments. Here we report the development and preclinical therapeutic performance of a strain-programmed patch that rapidly and robustly adheres to diabetic wounds, and promotes wound closure and re-epithelialization. The patch consists of a dried adhesive layer of crosslinked polymer networks bound to a pre-stretched hydrophilic elastomer backing, and implements a hydration-based shape-memory mechanism to mechanically contract diabetic wounds in a programmable manner on the basis of analytical and finite-element modelling. In mouse and human skin, and in mini-pigs and humanized mice, the patch enhanced the healing of diabetic wounds by promoting faster re-epithelialization and angiogenesis, and the enrichment of fibroblast populations with a pro-regenerative phenotype. Strain-programmed patches might also be effective for the treatment of other forms of acute and chronic wounds.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Animais , Camundongos , Suínos , Porco Miniatura , Cicatrização , Pé Diabético/tratamento farmacológico , Pé Diabético/metabolismo , Elastômeros , Polímeros/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...