Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Front Vet Sci ; 11: 1362011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872793

RESUMO

This study aims to investigate bacterial communities and antimicrobial resistance (AMR) in airborne dust from pig farms. Airborne dust, pig feces and feed were collected from nine pig farms in Thailand. Airborne dust samples were collected from upwind and downwind (25 meters from pig house), and inside (in the middle of the pig house) of the selected pig house. Pig feces and feed samples were individually collected from the pen floor and feed trough from the same pig house where airborne dust was collected. A direct total bacteria count on each sampling plate was conducted and averaged. The ESKAPE pathogens together with Escherichia coli, Salmonella, and Streptococcus were examined. A total of 163 bacterial isolates were collected and tested for MICs. Pooled bacteria from the inside airborne dust samples were analyzed using Metagenomic Sequencing. The highest bacterial concentration (1.9-11.2 × 103 CFU/m3) was found inside pig houses. Staphylococcus (n = 37) and Enterococcus (n = 36) were most frequent bacterial species. Salmonella (n = 3) were exclusively isolated from feed and feces. Target bacteria showed a variety of resistance phenotypes, and the same bacterial species with the same resistance phenotype were found in airborne dust, feed and fecal from each farm. Metagenomic Sequencing analysis revealed 1,652 bacterial species across all pig farms, of which the predominant bacterial phylum was Bacillota. One hundred fifty-nine AMR genes of 12 different antibiotic classes were identified, with aminoglycoside resistance genes (24%) being the most prevalent. A total of 251 different plasmids were discovered, and the same plasmid was detected in multiple farms. In conclusion, the phenotypic and metagenomic results demonstrated that airborne dust from pig farms contained a diverse array of bacterial species and genes encoding resistance to a range of clinically important antimicrobial agents, indicating the significant role in the spread of AMR bacterial pathogens with potential hazards to human health. Policy measurements to address AMR in airborne dust from livestock farms are mandatory.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38863334

RESUMO

OBJECTIVES: To characterize the mobile genetic elements and genetic localization of ileS2 in high-level mupirocin-resistant (Hi-MupR) methicillin-resistant Staphylococcus pseudintermedius (MRSP) and MRSA isolates recovered from canine and feline clinical samples. METHODS: The identification of bacterial species and presence of mecA and ileS2 genes in MRSP and MRSA isolates were performed using MALDI-TOF MS and PCR, respectively. Antimicrobial resistance (AMR) phenotypes were determined by broth microdilution assays. The genome characteristics, ileS2-containing elements and staphylococcal cassette chromosome mec (SCCmec) were illustrated using complete circular genomes obtained from hybrid assembly of Illumina short-reads and Oxford Nanopore Technologies long-reads. These were analysed through phylogenetic and bioinformatics approaches. RESULTS: A total of 18 MRSP clinical isolates and four MRSA clinical isolates exhibited the Hi-MupR phenotype and carried multiple AMR genes, including mecA and ileS2 genes. MRSP ST182-SCCmec V (n = 6) and ST282-ΨSCCmec57395-t10 (n = 4) contained the ileS2 transposable unit associated with IS257 on the chromosome. Three MRSA ST398-SCCmec V-t034/t4652 isolates carried ∼42 kb pSK41-like ileS2 plasmids, whereas similar ileS2 plasmids lacking tra genes were found in MRSP ST282-ΨSCCmec57395-t72/t21 isolates. Furthermore, a new group of ileS2 plasmids, carried by MRSP ST45-ΨSCCmec57395, ST433-ΨSCCmecKW21-t05 and ST2165-SCCmec IV-t06, and by one MRSA ST398-SCCmec V-t034 strain, shared the plasmid backbone with the cfr/fexA-carrying plasmid pM084526_1 in MRSA ST398. CONCLUSIONS: This study provides the first evidence of ileS2 integration into the S. pseudintermedius chromosome, which is a rare occurrence in staphylococcal species, and plasmids played a pivotal role in dissemination of ileS2 in both staphylococcal species.

3.
PLoS One ; 19(5): e0304250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787814

RESUMO

This study aimed to investigate the potential mechanisms associated with the persistence of chloramphenicol (CHP) resistance in Escherichia coli and Salmonella enterica isolated from pigs, pork, and humans in Thailand. The CHP-resistant E. coli (n = 106) and Salmonella (n = 57) isolates were tested for their CHP susceptibility in the presence and absence of phenylalanine arginine ß-naphthylamide (PAßN). The potential co-selection of CHP resistance was investigated through conjugation experiments. Whole genome sequencing (WGS) was performed to analyze the E. coli (E329, E333, and E290) and Salmonella (SA448, SA461, and SA515) isolates with high CHP MIC (32-256 µg/mL) and predominant plasmid replicon types. The presence of PAßN significantly reduced the CHP MICs (≥4-fold) in most E. coli (67.9%) and Salmonella (64.9%). Ampicillin, tetracycline, and streptomycin co-selected for CHP-resistant Salmonella and E. coli-transconjugants carrying cmlA. IncF plasmids were mostly detected in cmlA carrying Salmonella (IncFIIAs) and E. coli (IncFIB and IncF) transconjugants. The WGS analysis revealed that class1 integrons with cmlA1 gene cassette flanked by IS26 and TnAs1 were located on IncX1 plasmid, IncFIA(HI1)/HI1B plasmids and IncFII/FIB plasmids. IncFIA(HI1)/HI1B/Q1in SA448 contained catA flanked by IS1B and TnAs3. In conclusion, cross resistance through proton motive force-dependent mechanisms and co-selection by other antimicrobial agents involved the persistence of CHP-resistance in E. coli in this collection. Dissemination of CHP-resistance genes was potentially facilitated by mobilization via mobile genetic elements.


Assuntos
Escherichia coli , Testes de Sensibilidade Microbiana , Plasmídeos , Animais , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Tailândia , Suínos , Humanos , Plasmídeos/genética , Salmonella/genética , Salmonella/efeitos dos fármacos , Antibacterianos/farmacologia , Resistência ao Cloranfenicol/genética , Cloranfenicol/farmacologia , Sequenciamento Completo do Genoma
4.
Antibiotics (Basel) ; 13(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391534

RESUMO

Probiotics have been popularly used in livestock production as an alternative to antibiotics. This study aimed to investigate the microbiological quality and phenotypic and genotypic antimicrobial resistance of bacteria in probiotic products sold for food animals. A total of 45 probiotic products were examined for the number of viable cells, species, and antimicrobial susceptibility; the contamination of Escherichia coli and Salmonella; and the presence of 112 genes encoding resistance to clinically important antimicrobials and transferability of AMR determinants. The results showed that 29 of 45 products (64.4%) were incorrectly labeled in either number of viable cells or bacterial species. None of the tested products were contaminated with E. coli and Salmonella. A total of 33 out of 64 bacterial isolates (51.6%) exhibited resistance to at least one antimicrobial agent. Of the 45 products tested, 16 (35.5%) carried AMR genes. Almost all AMR genes detected in probiotic products were not correlated to the AMR phenotype of probiotic strains formulated in the products. Three streptomycin-resistant Lactobacillus isolates could horizontally transfer their AMR determinants. The findings demonstrated that the probiotic products could serve as reservoirs for the spread of AMR genes and may not yield benefits to animals as claimed. The need for the adequate quality control of probiotic products is highlighted.

5.
Clin Infect Dis ; 77(Suppl 7): S588-S596, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38118017

RESUMO

BACKGROUND: Strengthening external quality assessment (EQA) services across the One Health sector supports implementation of effective antimicrobial resistance (AMR) control strategies. Here we describe and compare 2 different approaches for conducting virtual laboratory follow-up assessments within an EQA program to evaluate quality management system (QMS) and procedures for pathogen identification and antimicrobial susceptibility testing (AST). METHODS: During the coronavirus disease 2019 (COVID-19) pandemic in 2021 and 2022, 2 laboratory assessment approaches were introduced: virtual-based and survey-based methodologies. The evaluation of 2 underperforming Animal Health laboratories through a virtual-based approach occurred between May and August 2021. This evaluation encompassed the utilization of 3 online meetings and document reviews, performed subsequent to the execution of EQA procedures. Within a distinct group of laboratories, the survey-based assessment was implemented from December 2021 to February 2022, also following EQA procedures. This phase encompassed the dissemination of an online survey to 31 participating laboratories, alongside a sole online consultation meeting involving 4 specific underperforming laboratories. RESULTS: The virtual-based assessment post-EQA aimed to identify gaps and areas for improvement in the laboratory's practices for pathogen identification and AST. This approach was, however, time-intensive, and, hence, only 2 laboratories were assessed. In addition, limited interactions in virtual platforms compromised the assessment quality. The survey-based post-EQA assessment enabled evaluation of 31 laboratories. Despite limitations for in-depth analysis of each procedure, gaps in QMS across multiple laboratories were identified and tailored laboratory-specific recommendations were provided. CONCLUSIONS: Reliable internet and plans for efficient time management, post-EQA virtual laboratory follow-up assessments are an effective alternative when conducting onsite evaluation is infeasible as observed during the COVID-19 pandemic, although the successful implementation of remediation plans will likely require in person assessments. We advocate application of hybrid approaches (both onsite and virtual) for targeted capacity building of AMR procedures with the ability to implement and oversee the process.


Assuntos
Anti-Infecciosos , COVID-19 , Saúde Única , Humanos , Controle de Qualidade , Laboratórios , Pandemias/prevenção & controle , Ásia , Garantia da Qualidade dos Cuidados de Saúde , Teste para COVID-19
6.
PLoS One ; 18(4): e0283359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37115770

RESUMO

The impact of antimicrobial resistance (AMR) on global public health has been widely documented. AMR in the environment poses a serious threat to both human and animal health but is frequently overlooked. This study aimed to characterize the association between phenotype and genotype of AMR, virulence genes and Extended-Spectrum ß-Lactamase (ESBL) production from estuarine environment. The Salmonella (n = 126) and E. coli (n = 409) were isolated from oysters and estuarine water in Thailand. The isolates of Salmonella (96.9%) and E. coli (91.4%) showed resistance to at least one antimicrobial agent. Multidrug resistance (MDR) was 40.1% of Salmonella and 23.0% of E. coli. Resistance to sulfamethoxazole was most common in Salmonella (95.2%) and E. coli (77.8%). The common resistance genes found in Salmonella were sul3 (14.3%), followed by blaTEM (11.9%), and cmlA (11.9%), while most E. coli were blaTEM (31.5%) and tetA (25.4%). The ESBL production was detected in Salmonella (1.6%, n = 2) of which one isolate was positive to blaTEM-1. Eight E. coli isolates (2.0%) were ESBL producers, of which three isolates carried blaCTX-M-55 and one isolate was blaTEM-1. Predominant virulence genes identified in Salmonella were invA (77.0%), stn (77.0%), and fimA (69.0%), while those in E. coli isolates were stx1 (17.8%), lt (11.7%), and stx2 (1.2%). Logistic regression models showed the statistical association between resistance phenotype, virulence genes and ESBL production (p < 0.05). The findings highlighted that estuarine environment were potential hotspots of resistance. One Health should be implemented to prevent AMR bacteria spreading.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Salmonella enterica , Animais , Humanos , Escherichia coli , Antibacterianos/farmacologia , Virulência/genética , Farmacorresistência Bacteriana/genética , beta-Lactamases/genética , Anti-Infecciosos/farmacologia , Infecções por Escherichia coli/microbiologia
7.
Microbiology (Reading) ; 168(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35766988

RESUMO

Whole-genome sequencing (WGS) was conducted to characterize mcr-carrying extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (n=7). These E. coli isolates originated from two pigs (TH2 and TH3) and two humans (TH8 and TH9) from Thailand, and three pigs from Lao PDR (LA1, LA2 and LA3). Four E. coli sequence types/serotypes - ST6833/H20 (TH2 and TH3), ST48/O160:H40 (TH8 and TH9), ST5708/H45 (LA1) and ST10562/O148:H30 (LA2 and LA3) - were identified. The plasmid replicon type IncF was identified in all isolates. The point mutations Ser31Thr in PmrA and His2Arg in PmrB were found concurrently in all isolates (colistin MIC=4-8 µg ml-1). LA1 contained up to five point mutations in PmrB, and the colistin MIC was not significantly different from that for the other isolates. All mcr-1.1 was located in the ISApl1-mcr-1-pap2 element, while all mcr-3.1 was located in the TnAs2-mcr-3.1-dgkA-ISKpn40 element. The mcr-3.1 and blaCTX-M-55 genes were co-localized on the same plasmid, which concurrently contained cml, qnrS1 and tmrB. The blaCTX-M-55 and mcr-3.1 genes were located on conjugative plasmids and could be transferred horizontally under selective pressure from ampicillin or colistin. In conclusion, comprehensive insights into the genomic information of ESBL-producing E. coli harbouring mcr were obtained. As mcr-carrying ESBL-producing E. coli were detected in pigs and humans, a holistic and multisectoral One Health approach is required to contain antimicrobial resistance (AMR).


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Genômica , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Suínos , beta-Lactamases/genética
8.
Epidemiol Infect ; 150: e110, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535461

RESUMO

This study aimed to determine the epidemiology and association of antimicrobial resistance (AMR) among Escherichia coli and Salmonella in Thailand. The E. coli (n = 1047) and Salmonella (n = 816) isolates from pigs, pork and humans were screened for 18 replicons including HI1, HI2, I1-γ, X, L/M, N, FIA, FIB, W, Y, P, FIC, A/C, T, FIIAs, F, K and B/O using polymerase chain reaction-based replicon typing. The E. coli (n = 26) and Salmonella (n = 3) isolates carrying IncF family replicons, ESBL and/or mcr genes were determined for FAB formula. IncF represented the major type of plasmids. Sixteen and eleven Inc groups were identified in E. coli (85.3%) and Salmonella (25.7%), respectively. The predominant replicon patterns between E. coli and Salmonella were IncK-F (23.7%) and IncF (46.2%). Significant correlations (P < 0.05) were observed between plasmid-replicon type and resistance phenotype. Plasmid replicon types were significantly different among sources of isolates and sampling periods. The most common FAB types between E. coli and Salmonella were F2:A-:B- (30.8%) and S1:A-:B- (66.7%), respectively. In conclusion, various plasmids present in E. coli and Salmonella. Responsible and prudent use of antimicrobials is suggested to reduce the selective pressures that favour the spread of AMR determinants. Further studies to understand the evolution of R plasmids and their contribution to the dissemination of AMR genes are warranted.


Assuntos
Infecções por Escherichia coli , Carne de Porco , Carne Vermelha , Salmonella enterica , Animais , Antibacterianos/farmacologia , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Humanos , Plasmídeos/genética , Salmonella/genética , Salmonella enterica/genética , Suínos , beta-Lactamases/genética
9.
J Med Microbiol ; 71(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35156609

RESUMO

Introduction. Antimicrobial resistance (AMR) is a One Health issue concerning humans, animals and the environment and a unified One Health approach is required to contain this problematic issue. Dogs and cats are popular pet animals and are known to carry many bacterial pathogens that are of public health importance, including Salmonella. However, data on AMR in companion animals is limited.Gap statement. Scant AMR data from bacteria originating from companion animals limits an accurate assessment of the impacts of pet-animal-related AMR on public health.Purpose. This study aimed to phenotypically and genetically investigate AMR in Salmonella isolated from pet dogs and cats in Thailand.Methodology. Salmonella enterica were isolated from pet dogs (n=159) and cats (n=19) in Thailand between 2016 and 2019. All isolates were serotyped. Phenotypic and genotypic antimicrobial resistance was examined. PCR-based replicon typing, replicon sequence typing and plasmid multilocus sequence typing were conducted to characterize plasmids.Results. Seventy-seven serovars were identified, with serovars Weltevreden (9.6%) and Stockholm (9.0%) the most common. Most of the isolates (34.3%) were multidrug-resistant. The serovar Stockholm was an ESBL-producer and carried the ß-lactamase genes bla TEM-1 and bla CTX-M-55. The plasmid-mediated quinolone resistance (PMQR) gene, qnrS, was also detected (10.1%). Class 1 integrons carrying the dfrA12-aadA2 cassette array were most frequent (45.9%). Five plasmid replicon types as IncA/C (0.6%), N (1.1%), IncFIIA (28.7%), IncHI1 (2.2%), and IncI1 (3.4%) were identified. Based on the pMLST typing scheme (n=9), plasmids were assigned into five different STs including IncA/C-ST6 (n=1), IncH1-ST16 (n=4), IncI1-ST3 (n=1), IncI1-ST60 (n=1) and IncI1-ST136 (n=1). The ST 16 of IncHI1 plasmid was a novel plasmid ST. Subtyping F-type plasmids using the RST scheme (n=9) revealed four different combinations of replicons including S1:A-:B- (n=4), S1:A-:B22 (n=2), S3:A-:B- (n=1) and S-:A-:B47 (n=1).Conclusions. Our findings highlight the role of clinically healthy household dogs and cats as carriers of AMR Salmonella strains with different R plasmid. The implementation of AMR phenotypes instigation and genotypic monitoring and surveillance programmes in companion animals are imperative as integral components of the One Health framework.


Assuntos
Portador Sadio/veterinária , Gatos , Cães , Farmacorresistência Bacteriana Múltipla , Salmonella enterica , Salmonella , Animais , Antibacterianos/farmacologia , Gatos/microbiologia , Cães/microbiologia , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Fatores R , Salmonella/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Tailândia/epidemiologia , beta-Lactamases/genética
10.
Sci Rep ; 12(1): 2466, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165337

RESUMO

This study aimed to determine the percentage of colistin resistant and ESBL-producing Escherichia coli from clinically sick and healthy pigs and understand the molecular mechanisms underlying colistin resistance and ESBL production. A total of 454 E. coli isolates from healthy pigs (n = 354; piglets, n = 83; fattening pigs, n = 142 and sows, n = 100) and sick pigs (n = 100) were examined for antimicrobial susceptibility, chromosomal and plasmid-mediated colistin resistance mechanisms and ESBL genes. The healthy (41%) and sick pig (73%) isolates were commonly resistant to colistin. Three mcr genes including mcr-1 (10.4%), mcr-2 (1.1%) and mcr-3 (45%) were detected, of which mcr-3 was most frequently detected in the healthy (33%) and sick pig (57%) isolates. Coexistence of mcr-1/mcr-3 and mcr-2/mcr-3 was observed in piglets (23%), fattening pig (3.5%) and sick pig (13%) isolates. Three amino acid substitutions including E106A and G144S in PmrA and V161G in PmrB were observed only in colistin-resistant isolates carrying mcr-3. The percentage of ESBL-producing E. coli was significantly higher in the sick pigs (44%) than the healthy pigs (19.2%) (P = 0.00). The blaCTX-M group was most prevalent (98.5%), of which blaCTX-M-14 (54.5%) and blaCTX-M-55 (42.9%) were predominant. The blaTEM-1 (68.8%) and blaCMY-2 (6.3%) genes were identified in ESBL-producers. All ESBL producers were multidrug resistant and the majority from piglets (97%), fattening pigs (77.3%) and sick pigs (82%) carried mcr gene (s). ESBL producers from piglets (n = 5) and sick pig (n = 1) simultaneously transferred blaTEM-1 (or blaCTX-M-55) and mcr-3 to Salmonella. In conclusion, pigs are important reservoirs of colistin-resistant E. coli that also produced ESBLs, highlighting the need for prudent and effective use of antimicrobials in pigs and other food-producing animals.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/biossíntese , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Plasmídeos , Doenças dos Suínos/microbiologia , beta-Lactamases/biossíntese , Animais , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Fazendas , Fezes/microbiologia , Feminino , Genes Bacterianos , Genótipo , Masculino , Testes de Sensibilidade Microbiana , Fenótipo , Suínos , beta-Lactamases/genética
11.
PLoS One ; 16(11): e0260011, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34784400

RESUMO

This study aimed to analyze three ESBL-producing E. coli co-harboring mcr and ESBL genes from a healthy fattening pig (E. 431) and two sick pigs (ECP.81 and ECP.82) in Thailand using Whole Genome Sequencing (WGS) using either Illumina MiSeq or HiSeq PE150 platforms to determine their genome and transmissible plasmids. E. 431 carrying mcr-2.1 and mcr-3.1 belonged to serotype O142:H31 with ST29 sequence type. ECP.81 and ECP.82 from sick pigs harboring mcr-1.1 and mcr-3.1 were serotype O9:H9 with ST10. Two mcr-1.1 gene cassettes from ECP.81 and ECP.82 were located on IncI2 plasmid with 98% identity to plasmid pHNSHP45. The mcr-2.1-carrying contig in E. 431 showed 100% identity to plasmid pKP37-BE with the upstream flanking sequence of IS1595. All three mcr-3.1-carrying contigs contained the ΔTnAs2-mcr-3.1-dgkA core segment and had high nucleotide similarity (85-100%) to mcr-3.1-carrying plasmid, pWJ1. The mobile elements i.e. IS4321, ΔTnAs2, ISKpn40 and IS3 were identified in the flanking regions of mcr-3. Several genes conferring resistance to aminoglycosides (aac(3)-IIa, aadA1, aadA2b, aph(3'')-Ib, aph(3')-IIa and aph(6)-Id), macrolides (mdf(A)), phenicols (cmlA1), sulphonamide (sul3) and tetracycline (tet(A) and tet(M)) were located on plasmids, of which their presence was well corresponded to the host's resistance phenotype. Amino acid substitutions S83L and D87G in GyrA and S80I and E62K in ParC were observed. The blaCTX-M-14 and blaCTX-M-55 genes were identified among these isolates additionally harbored blaTEM-1B. Co-transfer of mcr-1.1/blaTEM-1B and mcr-3.1/blaCTX-M-55 was observed in ECP.81 and ECP.82 but not located on the same plasmid. The results highlighted that application of advanced innovation technology of WGS in AMR monitoring and surveillance provide comprehensive information of AMR genotype that could yield invaluable benefits to development of control and prevention strategic actions plan for AMR.


Assuntos
Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Escherichia coli/classificação , Doenças dos Suínos/microbiologia , Sequenciamento Completo do Genoma/métodos , Substituição de Aminoácidos , Animais , Farmacorresistência Bacteriana , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Sequências Repetitivas Dispersas , Filogenia , Plasmídeos/genética , Sorogrupo , Suínos , Tailândia
12.
Sci Rep ; 11(1): 18091, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508122

RESUMO

This study aimed to characterize the alteration of the fecal microbiome and antimicrobial resistance (AMR) determinants in 24 piglets at day 3 pre-weaning (D. - 3), weaning day (D.0), days 3 (D.3) and 8 post-weaning (D.8), using whole-genome shotgun sequencing. Distinct clusters of microbiomes and AMR determinants were observed at D.8 when Prevotella (20.9%) was the major genus, whereas at D. - 3-D.3, Alistipes (6.9-12.7%) and Bacteroides (5.2-8.5%) were the major genera. Lactobacillus and Escherichia were notably observed at D. - 3 (1.2%) and D. - 3-D.3 (0.2-0.4%), respectively. For AMR, a distinct cluster of AMR determinants was observed at D.8, mainly conferring resistance to macrolide-lincosamide-streptogramin (mefA), ß-lactam (cfxA6 and aci1) and phenicol (rlmN). In contrast, at D. - 3-D.3, a high abundance of determinants with aminoglycoside (AMG) (sat, aac(6')-aph(2''), aadA and acrF), ß-lactam (fus-1, cepA and mrdA), multidrug resistance (MDR) (gadW, mdtE, emrA, evgS, tolC and mdtB), phenicol (catB4 and cmlA4), and sulfonamide patterns (sul3) was observed. Canonical correlation analysis (CCA) plot associated Escherichia coli with aac(6')-aph(2''), emrA, mdtB, catB4 and cmlA4 at D. - 3, D.0 and/or D.3 whereas at D.8 associations between Prevotella and mefA, cfxA6 and aci1 were identified. The weaning age and diet factor played an important role in the microbial community composition.


Assuntos
Antibacterianos/farmacologia , Fezes/microbiologia , Microbiota/efeitos dos fármacos , Desmame , Fatores Etários , Animais , Biodiversidade , Metagenoma , Metagenômica/métodos , Suínos
13.
Front Microbiol ; 12: 712843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526976

RESUMO

Alongside antibiotic resistance, co-selection of antibiotics, biocides, and metal resistance is a growing concern. While hospital wastewater is considered a hotspot for antibiotic-resistant bacteria (ARB) and genes (ARGs), the scenario in India, one of the biggest consumers of antibiotics, remains poorly described. In this study, we used metagenomic sequencing to characterize ARGs and biocide/metal resistance genes (BMRGs) in four wastewater treatment plants (WWTPs) in Jaipur City of India. We observed a significantly lower richness and abundance of ARGs in the influent of a WWTP exclusively receiving hospital wastewater when compared to other three WWTPs involving municipal wastewater treatment. Several tetracycline and macrolide-lincosamide-streptogramin resistance genes were enriched in influents of these three municipal wastewater-related treatment plants, whereas hospital wastewater had a higher abundance of genes conferring resistance to disinfectant-related compounds such as synergize and wex-cide-128, reflecting the patterns of antibiotic/disinfectant use. Of note, in the wastewater system with more chemicals, there was a strong correlation between the numbers of ARGs and BMRGs potentially harbored by common hosts. Our study highlights significant influxes of ARGs from non-hospital sources in Jaipur City, and thus more attention should be paid on the emergence of ARGs in general communities.

14.
J Vet Sci ; 22(5): e68, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34423604

RESUMO

BACKGROUND: Colistin and carbapenem-resistant bacteria have emerged and become a serious public health concern, but their epidemiological data is still limited. OBJECTIVES: This study examined colistin and carbapenem resistance in Escherichia coli and Salmonella from pigs, pig carcasses, and pork in Thailand, Lao PDR, and Cambodia border provinces. METHODS: The phenotypic and genotypic resistance to colistin and meropenem was determined in E. coli and Salmonella obtained from pigs, pig carcasses, and pork (n = 1,619). A conjugative experiment was performed in all isolates carrying the mcr gene (s) (n = 68). The plasmid replicon type was determined in the isolates carrying a conjugative plasmid with mcr by PCR-based replicon typing (n = 7). The genetic relatedness of mcr-positive Salmonella (n = 11) was investigated by multi-locus sequence typing. RESULTS: Colistin resistance was more common in E. coli (8%) than Salmonella (1%). The highest resistance rate was found in E. coli (17.8%) and Salmonella (1.7%) from Cambodia. Colistin-resistance genes, mcr-1, mcr-3, and mcr-5, were identified, of which mcr-1 and mcr-3 were predominant in E. coli (5.8%) and Salmonella (1.7%), respectively. The mcr-5 gene was observed in E. coli from pork in Cambodia. Two colistin-susceptible pig isolates from Thailand carried both mcr-1 and mcr-3. Seven E. coli and Salmonella isolates contained mcr-1 or mcr-3 associated with the IncF and IncI plasmids. The mcr-positive Salmonella from Thailand and Cambodia were categorized into two clusters with 94%-97% similarity. None of these clusters was meropenem resistant. CONCLUSIONS: Colistin-resistant E. coli and Salmonella were distributed in pigs, pig carcasses, and pork in the border areas. Undivided-One Health collaboration is needed to address the issue.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Escherichia coli/fisiologia , Carne de Porco/microbiologia , Salmonella/fisiologia , Animais , Camboja , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Laos , Plasmídeos/fisiologia , Salmonella/genética , Sus scrofa , Tailândia
15.
Antibiotics (Basel) ; 10(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439076

RESUMO

The authors would like to make the following corrections to the published paper [...].

16.
Antibiotics (Basel) ; 10(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072965

RESUMO

The study aimed to examine the prevalence and genetic characteristics of ESBL-production and colistin resistance in Salmonella and Escherichia coli from pigs and pork in the border area among Thailand, Cambodia, Lao PDR, and Myanmar. Salmonella (n = 463) and E. coli (n = 767) isolates were collected from pig rectal swab from slaughterhouses (n = 441) and pork from retail markets (n = 368) during October 2017 and March 2018. All were determined for susceptibility to colistin and cephalosporins, ESBL production and mcr and ESBL genes. Salmonella was predominantly found in Cambodia (65.8%). Serovars Rissen (35.6%) and Anatum (15.3%) were the most common. The E. coli prevalence in pork was above 91% in all countries. Colistin-resistance rate in E. coli (10.4%) was significantly higher than Salmonella (2.6%). ESBL-producing Salmonella (1.9%) and E. coli (6.3%) were detected. The blaCTX-M-55 and blaCTX-M-14 were identified. The mcr-1 gene was detected in Salmonella (n = 12) and E. coli (n = 68). The mcr-1/blaCTX-M-55 and mcr-3/blaCTX-M-55 co-concurrence was observed in one Salmonella and three E. coli isolates, respectively. In conclusion, pigs and pork serve as carriers of colistin and new generation cephalosporins resistance. Testing for resistance to last line antibiotics should be included in national AMR surveillance program using One Health approach.

17.
Antibiotics (Basel) ; 10(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33918995

RESUMO

Antibiotics have improved the length and quality of life of people worldwide and have had an immeasurable influence on agricultural animal health and the efficiency of animal production over the last 60 years. The increased affordability of animal protein for a greater proportion of the global population, in which antibiotic use has played a crucial part, has resulted in a substantial improvement in human quality of life. However, these benefits have come with major unintended consequences, including antibiotic resistance. Despite the inherent benefits of restricting antibiotic use in animal production, antibiotics remain essential to ensuring animal health, necessitating the development of novel approaches to replace the prophylactic and growth-promoting benefits of antibiotics. The third International Symposium on "Alternatives to Antibiotics: Challenges and Solutions in Animal Health and Production" in Bangkok, Thailand was organized by the USDA Agricultural Research Service, Faculty of Veterinary Science, Chulalongkorn University and Department of Livestock Development-Thailand Ministry of Agriculture and Cooperative; supported by OIE World Organization for Animal Health; and attended by more than 500 scientists from academia, industry, and government from 32 nations across 6 continents. The focus of the symposium was on ensuring human and animal health, food safety, and improving food animal production efficiency as well as quality. Attendees explored six subject areas in detail through scientific presentations and panel discussions with experts, and the major conclusions were as follows: (1) defining the mechanisms of action of antibiotic alternatives is paramount to enable their effective use, whether they are used for prevention, treatment, or to enhance health and production; (2) there is a need to integrate nutrition, health, and disease research, and host genetics needs to be considered in this regard; (3) a combination of alternatives to antibiotics may need to be considered to achieve optimum health and disease management in different animal production systems; (4) hypothesis-driven field trials with proper controls are needed to validate the safety, efficacy, and return of investment (ROI) of antibiotic alternatives.

18.
PLoS One ; 16(3): e0248536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33720963

RESUMO

The emergence and dissemination of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli is a global health issue. Food-producing animals, including pigs, are significant reservoirs of antimicrobial resistance (AMR), which can be transmitted to humans. Thus, the rapid detection of ESBLs is required for efficient epidemiological control and treatment. In this study, multiplex recombinase polymerase amplification (RPA) combined with a single-stranded tag hybridization chromatographic printed-array strip (STH-PAS), as a lateral flow strip assay (LFA), was established for the rapid and simultaneous detection of multiple bla genes in a single reaction. Visible blue lines, indicating the presence of the blaCTX-M, blaSHV, and blaOXA genes, were observed within 10 min by the naked eye. The limit of detection of all three genes was 2.5 ng/25 µL, and no cross-reactivity with seven commensal aerobic bacteria was observed. A total of 93.9% (92/98) and 96% (48/50) of the E. coli isolates from pork meat and fecal samples, respectively, expressed an ESBL-producing phenotype. Nucleotide sequencing of the PCR amplicons showed that blaCTX-M was the most prevalent type (91.3-95.83%), of which the main form was blaCTX-M-55. The sensitivity and specificity of the RPA-LFA were 99.2% and 100%, respectively, and were in almost perfect agreement (κ = 0.949-1.000) with the results from PCR sequencing. Thus, the RPA-LFA is a promising tool for rapid and equipment-free ESBL detection and may facilitate clinical diagnosis in human and veterinary medicine, as well as AMR monitoring and surveillance.


Assuntos
Ceco/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Microbiologia de Alimentos , Reação em Cadeia da Polimerase Multiplex , Carne de Porco/microbiologia , beta-Lactamases/genética , Escherichia coli/enzimologia , Proteínas de Escherichia coli/biossíntese , beta-Lactamases/biossíntese
19.
Appl Environ Microbiol ; 87(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33547058

RESUMO

This study aimed to detect the cecal microbiome, antimicrobial resistance (AMR) and heavy metal resistance genes (MRGs) in fattening pigs raised under antibiotic-free (ABF) conditions compared with ordinary industrial pigs (control, C) using whole-genome shotgun sequencing. ABF pigs showed the enrichment of Prevotella (33%) and Lactobacillus (13%), whereas Escherichia coli (40%), Fusobacterium and Bacteroides (each at 4%) were notably observed in the C group. Distinct clusters of cecal microbiota of ABF and C pigs were revealed; however, microbiota of some C pigs (C1) appeared in the same cluster as ABF and were totally separated from the remaining C pigs (C2). For AMR genes, the highest abundance tet(Q) (35.7%) and mef(A) (12.7%) were markedly observed in the ABF group whereas tet(Q) (26.2%) and tet(W) (10.4%) were shown in the C group. tet(Q) was positively correlated to Prevotella in ABF and C1 samples. In the C2 group, the prominent tet(W) was positively correlated to Fusobacterium and Bacteroides Pigs have never received tetracycline but pregnant sows used chlortetracycline once 7 d before parturition. Chromosomal Cu and Zn resistance genes were also shown in both groups regardless the received Cu and Zn feed additives. A higher abundance of multi-metal resistance genes was observed in the C group (44%) compared with the ABF group (41%). In conclusion, the microbiome clusters in some C pigs were similar to that in ABF pigs. High abundant tetracycline resistance genes interrelated to major bacteria were observed in both ABF and C pigs. MRGs were also observed.IMPORTANCE: Owing to the increased problem of AMR in farm animals, raising farm animals without antibiotics is one method that could solve this problem. Our study showed that only some tetracycline and macrolide resistance genes, tet(Q), tet(W) and mef(A), were markedly abundant in ABF and C groups. The tet(Q) and tet(W) genes interrelated to different predominant bacteria in each group, showing the potential role of major bacteria as reservoirs of AMR genes. In addition, chromosomal Cu and Zn resistance genes were also observed in both pig groups, not depending on the use of Cu and Zn additives in both farms. The association of MRGs and AMR genotypes and phenotypes together with the method to re-sensitize bacteria to antibiotics should be studied further to unveil the cause of high resistance genes and solve the problems.

20.
Microb Drug Resist ; 27(4): 571-584, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32898454

RESUMO

This study aimed to investigate antimicrobial resistance (AMR) characteristics of Escherichia coli isolates from pig origin (including pigs, pig carcass, and pork) and humans in Thailand and Lao People's Democratic Republic (PDR) border provinces. The majority of the E. coli isolates from Thailand (69.7%) and Lao PDR (63.3%) exhibited multidrug resistance. Class 1 integrons with resistance gene cassettes were common (n = 43), of which the most predominant resistance gene cassette was aadA1. The percentage of extended-spectrum beta-lactamase (ESBL) producers was 3.4 in Thailand and 3.2 in Lao PDR. The ESBL genes found were blaCTX-M14, blaCTX-M27, and blaCTX-M55, of which blaCTX-M55 was the most common (58.6%). Ser-83-Leu and Asp-87-Asn were the predominant amino acid changes in GyrA of ciprofloxacin-resistant isolates. Twenty-two percent of all isolates were positive for qnrS. Class 1 integrons carrying aadA1 from pigs (n = 1) and ESBL genes (blaCTX-M55 and blaCTX-M14) from pigs (n = 2), pork (n = 1), and humans (n = 7) were located on conjugative plasmids. Most plasmids (29.3%) were typed in the IncFrepB group. In conclusion, AMR E. coli are common in pig origin and humans in these areas. The findings confirm AMR as One Health issue, and highlight the need for comprehensive and unified collaborations within and between sectors on research and policy.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Carne de Porco/microbiologia , Animais , Humanos , Integrons/genética , Laos , Testes de Sensibilidade Microbiana , Plasmídeos , Suínos , Tailândia , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...