Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 133647, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964693

RESUMO

Teeth discoloration poses a widespread challenge in dental health across various regions. Conventional teeth whitening methods often result in enamel deterioration and soft tissue harm due to the utilization of incompatible whitening agents and continuous intense light exposure. Here, we propose an effective phototherapy technique for teeth whitening, employing pathways of energy transition through intersystem crossing. The integration of MoS2 nanosheets into carrageenan gel (MoS2 NSs@Carr) facilitates both photothermal-hyperthermia and the generation of reactive oxygen species (ROS) through photocatalytic processes. The efficacy of ROS generation by the phototherapeutic MoS2 NSs@Carr on teeth whitening in all scenarios. This approach ensures comprehensive teeth whitening by eliminating deep-seated stains on the teeth while preserving structural integrity and avoiding any tissue toxicity. This research highlights the efficacy of the phototherapeutic MoS2 NSs@Carr for dental whitening and underscores the potential of exploring nanostructures based on MoS2 NSs for treating oral ailments.

2.
Int J Biol Macromol ; 273(Pt 2): 132700, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879998

RESUMO

Ocular disorders, encompassing both common ailments like dry eye syndrome and more severe situations for instance age-related macular degeneration, present significant challenges to effective treatment due to the intricate architecture and physiological barriers of the eye. Polysaccharides are emerging as potential solutions for drug delivery to the eyes due to their compatibility with living organisms, natural biodegradability, and adhesive properties. In this review, we explore not only the recent advancements in polysaccharide-based technologies and their transformative potential in treating ocular illnesses, offering renewed optimism for both patients and professionals but also anatomy of the eye and the significant obstacles hindering drug transportation, followed by an investigation into various drug administration methods and their ability to overcome ocular-specific challenges. Our focus lies on biological adhesive polymers, including chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer, known for their adhesive characteristics enhancing drug retention on ocular surfaces and increasing bioavailability. A detailed analysis of material designs used in ophthalmic formulations, such as gels, lenses, eye drops, nanofibers, microneedles, microspheres, and nanoparticles, their advantages and limitations, the potential of formulations in improving therapeutic outcomes for various eye conditions. Moreover, we underscore the discovery of novel polysaccharides and their potential uses in ocular drug delivery.


Assuntos
Celulose , Quitosana , Ciclodextrinas , Oftalmopatias , Ácido Hialurônico , Poloxâmero , Humanos , Quitosana/química , Quitosana/uso terapêutico , Ácido Hialurônico/química , Ácido Hialurônico/uso terapêutico , Celulose/química , Celulose/uso terapêutico , Poloxâmero/química , Oftalmopatias/tratamento farmacológico , Ciclodextrinas/química , Ciclodextrinas/uso terapêutico , Sistemas de Liberação de Medicamentos , Animais , Portadores de Fármacos/química , Soluções Oftálmicas/química , Soluções Oftálmicas/uso terapêutico , Administração Oftálmica
3.
Colloids Surf B Biointerfaces ; 235: 113759, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280240

RESUMO

Polysaccharides, with the abundant availability, biodegradability, and inherent safety, offer a vast array of promising applications. Leveraging the remarkable attributes of polysaccharides, biomimetic and multifunctional hydrogels have emerged as a compelling avenue for efficacious wound dressing. The gels emulate the innate extracellular biomatrix as well as foster cellular proliferation. The distinctive structural compositions and profusion of functional groups within polysaccharides confer excellent physical/chemical traits as well as distinct restorative involvements. Gels crafted from polysaccharide matrixes serve as a robust defense against bacterial threats, effectively shielding wounds from harm. This comprehensive review delves into wound physiology, accentuating the significance of numerous polysaccharide-based gels in the wound healing context. The discourse encompasses an exploration of polysaccharide hydrogels tailored for diverse wound types, along with an examination of various therapeutic agents encapsulated within hydrogels to facilitate wound repair, incorporating recent patent developments. Within the scope of this manuscript, the perspective of these captivating gels for promoting optimal healing of wounds is vividly depicted. Nevertheless, the pursuit of knowledge remains ongoing, as further research is warranted to bioengineer progressive polysaccharide gels imbued with adaptable features. Such endeavors hold the promise of unlocking substantial potential within the realm of wound healing, propelling us toward multifaceted and sophisticated solutions.


Assuntos
Polissacarídeos , Cicatrização , Polissacarídeos/farmacologia , Polissacarídeos/química , Hidrogéis/farmacologia , Hidrogéis/química , Proliferação de Células , Biomimética , Antibacterianos/farmacologia
4.
ACS Energy Lett ; 8(2): 1273-1280, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37941794

RESUMO

Achieving high energy density in all-solid-state lithium batteries will require the design of thick cathodes, and these will need to operate reversibly under normal use conditions. We use high-energy depth-profiling X-ray diffraction to measure the localized lithium content of Li1-xNi1/3Mn1/3Co1/3O2 (NMC111) through the thickness of 110 µm thick composite cathodes. The composite cathodes consisted of NMC111 of varying mass loadings mixed with argyrodite solid electrolyte Li6PS5Cl (LPSC). During cycling at C/10, substantial lithiation gradients developed, and varying the NMC111 loading altered the nature of these gradients. Microstructural analysis and cathode modeling showed this was due to high tortuosities in the cathodes. This was particularly true in the solid electrolyte phase, which experienced a marked increase in tortuosity factor during the initial charge. Our results demonstrate that current distributions are observed in sulfide-based composites and that these will be an important consideration for practical design of all-solid-state batteries.

5.
ACS Meas Sci Au ; 3(5): 344-354, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37877006

RESUMO

High-resolution X-ray computed tomography (CT) has become an invaluable tool in battery research for its ability to probe phase distributions in sealed samples. The Cartesian coordinates used in describing the CT image stack are not appropriate for understanding radial dependencies, like that seen in bobbin-type batteries. The most prominent of these bobbin-type batteries is alkaline Zn-MnO2, which dominates the primary battery market. To understand material radial dependencies within these batteries, a method is presented to approximate the Cartesian coordinates of CT data into pseudo-cylindrical coordinates. This is important because radial volume fractions are the output of computational battery models, and this will allow the correlation of a battery model to CT data. A selection of 10 anodes inside Zn-MnO2 AA batteries are used to demonstrate the method. For these, the pseudo-radius is defined as the relative distance in the anode between the central current collecting pin and the separator. Using these anodes, we validate that this method results in averaged one-dimensional material profiles that, when compared to other methods, show a better quantitative match to individual local slices of the anodes in the polar θ-direction. The other methods tested are methods that average to an absolute center point based on either the pin or the separator. The pseudo-cylindrical method also corrects for slight asymmetries observed in bobbin-type batteries because the pin is often slightly off-center and the separator often has a noncircular shape.

6.
Science ; 382(6667): 185-190, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37708297

RESUMO

Coarse-grained materials are widely accepted to display the highest strain hardening and the best tensile ductility. We experimentally report an attractive strain hardening rate throughout the deformation stage at 77 kelvin in a stable single-phase alloy with gradient dislocation cells that even surpasses its coarse-grained counterparts. Contrary to conventional understanding, the exceptional strain hardening arises from a distinctive dynamic structural refinement mechanism facilitated by the emission and motion of massive multiorientational tiny stacking faults (planar defects), which are fundamentally distinct from the traditional linear dislocation-mediated deformation. The dominance of atomic-scale planar deformation faulting in plastic deformation introduces a different approach for strengthening and hardening metallic materials, offering promising properties and potential applications.

7.
Proc Natl Acad Sci U S A ; 119(28): e2202044119, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867742

RESUMO

Liquid polymorphism is an intriguing phenomenon that has been found in a few single-component systems, the most famous being water. By supercooling liquid Te to more than 130 K below its melting point and performing simultaneous small-angle and wide-angle X-ray scattering measurements, we observe clear maxima in its thermodynamic response functions around 615 K, suggesting the possible existence of liquid polymorphism. A close look at the underlying structural evolution shows the development of intermediate-range order upon cooling, most strongly around the thermodynamic maxima, which we attribute to bond-orientational ordering. The striking similarities between our results and those of water, despite the lack of hydrogen-bonding and tetrahedrality in Te, indicate that water-like anomalies may be a general phenomenon among liquid systems with competing bond- and density-ordering.

8.
Nat Mater ; 21(2): 217-227, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34824396

RESUMO

Lithium-ion batteries are yet to realize their full promise because of challenges in the design and construction of electrode architectures that allow for their entire interior volumes to be reversibly accessible for ion storage. Electrodes constructed from the same material and with the same specifications, which differ only in terms of dimensions and geometries of the constituent particles, can show surprising differences in polarization, stress accumulation and capacity fade. Here, using operando synchrotron X-ray diffraction and energy dispersive X-ray diffraction (EDXRD), we probe the mechanistic origins of the remarkable particle geometry-dependent modification of lithiation-induced phase transformations in V2O5 as a model phase-transforming cathode. A pronounced modulation of phase coexistence regimes is observed as a function of particle geometry. Specifically, a metastable phase is stabilized for nanometre-sized spherical V2O5 particles, to circumvent the formation of large misfit strains. Spatially resolved EDXRD measurements demonstrate that particle geometries strongly modify the tortuosity of the porous cathode architecture. Greater ion-transport limitations in electrode architectures comprising micrometre-sized platelets result in considerable lithiation heterogeneities across the thickness of the electrode. These insights establish particle geometry-dependent modification of metastable phase regimes and electrode tortuosity as key design principles for realizing the promise of intercalation cathodes.

9.
Science ; 374(6570): 984-989, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34554824

RESUMO

Similar to conventional materials, most multicomponent high-entropy alloys (HEAs) lose ductility as they gain strength. In this study, we controllably introduced gradient nanoscaled dislocation cell structures in a stable single-phase HEA with face-centered cubic structure, thus resulting in enhanced strength without apparent loss of ductility. Upon application of strain, the sample-level structural gradient induces progressive formation of a high density of tiny stacking faults (SFs) and twins, nucleating from abundant low-angle dislocation cells. Furthermore, the SF-induced plasticity and the resultant refined structures, coupled with intensively accumulated dislocations, contribute to plasticity, increased strength, and work hardening. These findings offer a promising paradigm for tailoring properties with gradient dislocation cells at the nanoscale and advance our fundamental understanding of the intrinsic deformation behavior of HEAs.

10.
Sci Rep ; 11(1): 5921, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723380

RESUMO

The solidification mechanism and segregation behavior of laser-melted Mn35Fe5Co20Ni20Cu20 was firstly investigated via in situ synchrotron x-ray diffraction at millisecond temporal resolution. The transient composition evolution of the random solid solution during sequential solidification of dendritic and interdendritic regions complicates the analysis of synchrotron diffraction data via any single conventional tool, such as Rietveld refinement. Therefore, a novel approach combining a hard-sphere approximation model, thermodynamic simulation, thermal expansion measurement and microstructural characterization was developed to assist in a fundamental understanding of the evolution of local composition, lattice parameter, and dendrite volume fraction corresponding to the diffraction data. This methodology yields self-consistent results across different methods. Via this approach, four distinct stages were identified, including: (I) FCC dendrite solidification, (II) solidification of FCC interdendritic region, (III) solid-state interdiffusion and (IV) final cooling with marginal diffusion. It was found out that in Stage I, Cu and Mn were rejected into liquid as Mn35Fe5Co20Ni20Cu20 solidified dendritically. During Stage II, the lattice parameter disparity between dendrite and interdendritic region escalated as Cu and Mn continued segregating into the interdendritic region. After complete solidification, during Stage III, the lattice parameter disparity gradually decreases, demonstrating a degree of composition homogenization. The volume fraction of dendrites slightly grew from 58.3 to 65.5%, based on the evolving composition profile across a dendrite/interdendritic interface in diffusion calculations. Postmortem metallography further confirmed that dendrites have a volume fraction of 64.7% ± 5.3% in the final microstructure.

11.
Phys Chem Chem Phys ; 22(38): 21977-21987, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32975272

RESUMO

Coin cells are used extensively as test devices in battery research for evaluation of new materials and optimization of cycling protocols. In this study, in situ X-ray diffraction profilometry is used to characterize spatial distribution of the active materials, lithiation, and phase distribution in electrodes of NCM523/graphite coin cells. The X-ray data indicate uneven areal compression of the electrode assembly in such cells, which we trace to a specific design feature that leads to elastic deformation of a metal spacer. Steep lithiation gradients observed in the electrodes imply radially-dependent resistivity, for which uneven compression of the separator is a likely cause. Electrochemical model calculations suggest that variable porosity of the polymer separator would account for the salient features of spatial profiles observed in these coin cells.

12.
Addit Manuf ; 35: 101322, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32835025

RESUMO

The deformations of isotropic and anisotropic Ti-6Al-4V columnar structures fabricated by additive manufacturing were extensively examined. The distinct texture and microstructure distributions were characterised. In situ X-ray diffraction measurements show different lattice activities resulting from the different microstructure distributions. Spatially resolved mapping revealed manufacturing-induced crystallite-orientation distributions that determine the deformation mechanisms. We propose a self-consistent model to correlate the multi-scale characteristics, from the anisotropic-texture-distribution microstructure to the bulk mechanical properties. We determined that basal and pyramidal slip activities were activated by tension deformation. The underlying additive-manufacturing-induced crystal plasticity plays a major role. We find that the texture development of the columnar structures and the distribution of crystallite orientation achieved by different processing conditions during additive manufacturing have important effects on the mechanical properties. The dominant deformation mode for the anisotropic Ti-6Al-4V columnar structure is basal slip, and that for the isotropic Ti-6Al-4V columnar structure is pyramidal slip. The difference may be important for determining the fatigue behaviour.

13.
Mol Pharmacol ; 78(2): 175-85, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20460431

RESUMO

Breast cancer resistance protein (BCRP/ABCG2) is a membrane-bound efflux transporter important in cellular detoxification and multidrug resistance. Some aryl hydrocarbon receptor (AHR) agonists were reported to induce BCRP expression in human colon carcinoma cells. However, a direct involvement of AHR transcriptional regulation remains unexplored. In this study, we show that BCRP induction by AHR ligands occurs in human intestinal, liver, and mammary carcinoma cells and in primary colonocytes and hepatocytes. Increased BCRP transporter activity consistent with gene induction was also evident in the Caco2 subclone C2bbe1 cells. Using RNA interference and ectopic expression techniques to manipulate cellular AHR status, we confirmed AHR dependence of ABCG2 gene regulation. By gene promoter analysis, chromatin immunoprecipitation, and electrophoretic mobility shift assays, an active, proximal dioxin-response element at -194/-190 base pairs upstream of the transcription start site of the human ABCG2 gene was identified. Despite a common observation in human-derived cells, our in vitro and in vivo studies supported by phylogenetic footprinting analysis did not find that mouse Abcg2 is subject to AHR regulation. We conclude that AHR is a direct transcriptional regulator of human BCRP and provide an unprecedented role of AHR in cellular adaptive response and cytoprotection by up-regulating an important ATP-binding cassette efflux transporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/genética , Receptores de Hidrocarboneto Arílico/fisiologia , Transativadores/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Feminino , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Filogenia , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Expert Opin Drug Metab Toxicol ; 6(8): 883-93, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20374039

RESUMO

IMPORTANCE OF THE FIELD: Recently-discovered tonicity-dependence of human CYP3A expression in vitro may be a novel mechanism of CYP3A regulation in the intestinal epithelia, which exists in a dynamic osmotic environment influenced by food intake. AREAS COVERED IN THIS REVIEW: A combination of focused and comprehensive literature searches to identify any relevant reports using Medline (from 1950 to 7 November 2009) through the OVID system. WHAT THE READER WILL GAIN: An update on current knowledge on osmotic environment in the gastrointestinal (GI) tract and its impact on intestinal CYP3A expression and function with special emphasis on the tonicity-sensitive transcription factor nuclear factor of activated T cells 5 (NFAT5). TAKE HOME MESSAGE: In vitro hypertonicity of ambient osmotic environment in cultured human cells increases expression of CYP3A through transcriptional enhancement by osmosensitive NFAT5. Although post-prandial osmolality in the GI lumen in vivo is substantially increased, NFAT5 activation has not been reported. Similarly, high-salt diet increases intestinal CYP3A function in humans, but it is not known whether these changes are mediated directly by NFAT5.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Mucosa Intestinal/enzimologia , Fatores de Transcrição NFATC/metabolismo , Animais , Regulação Enzimológica da Expressão Gênica , Humanos , Concentração Osmolar , Período Pós-Prandial , Cloreto de Sódio na Dieta/farmacologia , Transcrição Gênica
15.
Mol Pharmacol ; 72(4): 826-37, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17600221

RESUMO

We report the discovery of an osmosensitive transcriptional control of human CYP3A4, CYP3A7, and CYP3A5. Ambient hypertonicity (350-450 mOsmol/kg) increased mRNA expressions of the CYP3A by approximately 10- to 20-fold in human-intestinal C(2)bbe1 cells, followed by an increase of CYP3A protein. Hypotonicity, on the other hand, suppressed CYP3A mRNA levels, indicating that physiological isotonic conditions may regulate the basal expression of CYP3A. Similar responses to ambient tonicity were observed in other human-derived cell lines (intestinal LS180 and hepatic HepG2) and human primary colonic cells. The 11-base pair tonicity-responsive enhancer (TonE) is an osmosensitive regulator that is activated by the transcription factor, the nuclear factor of activated T-cells 5 (NFAT5). Luciferase-based reporter assays of 13 consensus TonE motifs within +/-10 kilobases (kb) from the transcription start sites of CYP3A showed that only the CYP3A7 intron 2 region ( approximately 5 kb downstream from the transcription start site), which contains two TonE motifs (+5076/+5086 and + 5417/+5427), was responsive to hypertonicity stimuli. This observation was confirmed upon cotransfection with an NFAT5 expression vector, small interfering RNA, or dominant-negative NFAT5. Deletion and mutation analyses suggested that the TonE (+5417/+5427) is indispensable for the enhancer activity. NFAT5 binding to the CYP3A7 intron 2 TonE motif was demonstrated with electrophoretic mobility shift assay and in a native cell context by chromatin immunoprecipitation. We conclude that transcription of human CYP3A is influenced by ambient tonicity. The physiological significance of the tonic regulation of CYP3A enzymes remains to be determined.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Fatores de Transcrição NFATC/fisiologia , Transcrição Gênica/fisiologia , Linhagem Celular , Citocromo P-450 CYP3A , Humanos , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...