Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 11(5): 1013-1025, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28371785

RESUMO

Highly integrated neural sensing microsystems are crucial to capture accurate signals for brain function investigations. In this paper, a 256-channel neural sensing microsystem with a sensing area of 5 × 5 mm 2 is presented based on 2.5-D through-silicon-via (TSV) integration. This microsystem composes of dissolvable µ-needles, TSV-embedded µ-probes, 256-channel neural amplifiers, 11-bit area-power-efficient successive approximation register analog-to-digital converters, and serializers. This microsystem can detect 256 electrocorticography and local field potential signals within a small area of 5 mm × 5 mm. The neural amplifier realizes 57.8 dB gain with only 9.8 µW per channel. The overall power of this microsystem is only 3.79 mW for 256-channel neural sensing. A smaller microsystem with dimension of 6 mm × 4 mm has been also implanted into rat brain for somatosensory evoked potentials (SSEPs) recording by using contralateral and ipsilateral electrical stimuli with intensity from 0.2 to 1.0 mA, and successfully observed different SSEPs from left somatosensory cortex of a rat.


Assuntos
Amplificadores Eletrônicos , Encéfalo/fisiologia , Eletrodos Implantados , Potenciais Somatossensoriais Evocados , Animais , Microtecnologia , Ratos
2.
Biomed Microdevices ; 17(1): 11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25653056

RESUMO

We present a new double-sided, single-chip monolithic integration scheme to integrate the CMOS circuits and MEMS structures by using through-silicon-via (TSV). Neural sensing applications were chosen as the implementation example. The proposed heterogeneous device integrates standard 0.18 µm CMOS technology, TSV and neural probe array into a compact single chip device. The neural probe array on the back-side of the chip is connected to the CMOS circuits on the front-side of the chip by using low-parasitic TSVs through the chip. Successful fabrication results and detailed characterization demonstrate the feasibility and performance of the neural probe array, TSV and readout circuitry. The fabricated device is 5 × 5 mm(2) in area, with 16 channels of 150 µm-in-length neural probe array on the back-side, 200 µm-deep TSV through the chip and CMOS circuits on the front-side. Each channel consists of a 5 × 6 probe array, 3 × 14 TSV array and a differential-difference amplifier (DDA) based analog front-end circuitry with 1.8 V supply, 21.88 µW power consumption, 108 dB CMRR and 2.56 µVrms input referred noise. In-vivo long term implantation demonstrated the feasibility of presented integration scheme after 7 and 58 days of implantation. We expect the conceptual realization can be extended for higher density recording array by using the proposed method.


Assuntos
Eletrodos Implantados , Dispositivos Lab-On-A-Chip
3.
IEEE Trans Biomed Circuits Syst ; 8(6): 810-23, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25576575

RESUMO

Heterogeneously integrated and miniaturized neural sensing microsystems are crucial for brain function investigation. In this paper, a 2.5D heterogeneously integrated bio-sensing microsystem with µ-probes and embedded through-silicon-via (TSVs) is presented for high-density neural sensing applications. This microsystem is composed of µ-probes with embedded TSVs, 4 dies and a silicon interposer. For capturing 16-channel neural signals, a 24 × 24 µ-probe array with embedded TSVs is fabricated on a 5×5 mm(2) chip and bonded on the back side of the interposer. Thus, each channel contains 6 × 6 µ -probes with embedded TSVs. Additionally, the 4 dies are bonded on the front side of the interposer and designed for biopotential acquisition, feature extraction and classification via low-power analog front-end (AFE) circuits, area-power-efficient analog-to-digital converters (ADCs), configurable discrete wavelet transforms (DWTs), filters, and a MCU. An on-interposer bus ( µ-SPI) is designed for transferring data on the interposer. Finally, the successful in-vivo test demonstrated the proposed 2.5D heterogeneously integrated bio-sensing microsystem. The overall power of this microsystem is only 676.3 µW for 16-channel neural sensing.


Assuntos
Monitorização Neurofisiológica/instrumentação , Monitorização Neurofisiológica/métodos , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...