Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(6): 112557, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37224019

RESUMO

Despite its pivotal roles in biology, how the transcriptional activity of c-MYC is tuned quantitatively remains poorly defined. Here, we show that heat shock factor 1 (HSF1), the master transcriptional regulator of the heat shock response, acts as a prime modifier of the c-MYC-mediated transcription. HSF1 deficiency diminishes c-MYC DNA binding and dampens its transcriptional activity genome wide. Mechanistically, c-MYC, MAX, and HSF1 assemble into a transcription factor complex on genomic DNAs, and surprisingly, the DNA binding of HSF1 is dispensable. Instead, HSF1 physically recruits the histone acetyltransferase general control nonderepressible 5 (GCN5), promoting histone acetylation and augmenting c-MYC transcriptional activity. Thus, we find that HSF1 specifically potentiates the c-MYC-mediated transcription, discrete from its canonical role in countering proteotoxic stress. Importantly, this mechanism of action engenders two distinct c-MYC activation states, primary and advanced, which may be important to accommodate diverse physiological and pathological conditions.


Assuntos
Proteínas de Ligação a DNA , Resposta ao Choque Térmico , Fatores de Transcrição , DNA , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Linhagem Celular Tumoral
2.
J Hypertens ; 40(10): 1979-1993, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36052522

RESUMO

OBJECTIVE: Vascular calcification has been considered as a potential therapeutic target in pulmonary hypertension. Mg2+ has a protective role against calcification. This study aimed to investigate whether Mg2+ could alleviate pulmonary hypertension by reducing medial calcification of pulmonary arteries. METHODS: Monocrotaline (MCT)-induced and chronic hypoxia-induced pulmonary hypertension rats were given an oral administration of 10% MgSO4 (10 ml/kg per day). Additionally, we administered Mg2+ in calcified pulmonary artery smooth muscle cells (PASMCs) after incubating with ß-glycerophosphate (ß-GP, 10 mmol/l). RESULTS: In vivo, MCT-induced and chronic hypoxia-induced pulmonary hypertension indexes, including right ventricular systolic pressure, right ventricular mass index, and arterial wall thickness, as well as Alizarin Red S (ARS) staining-visualized calcium deposition, high calcium levels, and osteochondrogenic differentiation in pulmonary arteries, were mitigated by dietary Mg2+ intake. In vitro, ß-GP-induced calcium-rich deposits stained by ARS, calcium content, as well as the detrimental effects of calcification to proliferation, migration, and resistance to apoptosis of PASMCs were alleviated by high Mg2+ but exacerbated by low Mg2+. Expression levels of mRNA and protein of ß-GP-induced osteochondrogenic markers, RUNX Family Transcription Factor 2, and Msh Homeobox 2 were decreased by high Mg2+ but increased by low Mg2+; however, Mg2+ did not affect ß-GP-induced expression of SRY-Box Transcription Factor 9. Moreover, mRNA expression and protein levels of ß-GP-reduced calcification inhibitor, Matrix GLA protein was increased by high Mg2+ but decreased by low Mg2+. CONCLUSION: Mg2+ supplement is a powerful strategy to treat pulmonary hypertension by mitigating pulmonary arterial calcification as the calcification triggered physiological and pathological changes to PASMCs.


Assuntos
Hipertensão Pulmonar , Animais , Cálcio/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Hipóxia , Magnésio/farmacologia , Monocrotalina/metabolismo , Monocrotalina/toxicidade , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , RNA Mensageiro/metabolismo , Ratos , Roedores , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia
3.
Elife ; 112022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35037619

RESUMO

Hedgehog (Hh) and Bone Morphogenetic Proteins (BMPs) pattern the developing Drosophila wing by functioning as short- and long-range morphogens, respectively. Here, we show that a previously unknown Hh-dependent mechanism fine-tunes the activity of BMPs. Through genome-wide expression profiling of the Drosophila wing imaginal discs, we identify nord as a novel target gene of the Hh signaling pathway. Nord is related to the vertebrate Neuron-Derived Neurotrophic Factor (NDNF) involved in congenital hypogonadotropic hypogonadism and several types of cancer. Loss- and gain-of-function analyses implicate Nord in the regulation of wing growth and proper crossvein patterning. At the molecular level, we present biochemical evidence that Nord is a secreted BMP-binding protein and localizes to the extracellular matrix. Nord binds to Decapentaplegic (Dpp) or the heterodimer Dpp-Glass-bottom boat (Gbb) to modulate their release and activity. Furthermore, we demonstrate that Nord is a dosage-dependent BMP modulator, where low levels of Nord promote and high levels inhibit BMP signaling. Taken together, we propose that Hh-induced Nord expression fine-tunes both the range and strength of BMP signaling in the developing Drosophila wing.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Hedgehog/metabolismo , Asas de Animais/crescimento & desenvolvimento , Animais , Padronização Corporal/genética , Proteínas de Drosophila/genética , Proteínas Hedgehog/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo
4.
Hypertension ; 77(2): 617-631, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33356397

RESUMO

Pulmonary hypertension (PH) is characterized by profound vascular remodeling and altered Ca2+ homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Magnesium ion (Mg2+), a natural Ca2+ antagonist and a cofactor for numerous enzymes, is crucial for regulating diverse cellular functions, but its roles in PH remains unclear. Here, we examined the roles of Mg2+ and its transporters in PH development. Chronic hypoxia and monocrotaline induced significant PH in adult male rats. It was associated with a reduction of [Mg2+]i in PASMCs, a significant increase in gene expressions of Cnnm2, Hip14, Hip14l, Magt1, Mmgt1, Mrs2, Nipa1, Nipa2, Slc41a1, Slc41a2 and Trpm7; upregulation of SLC41A1, SLC41A2, CNNM2, and TRPM7 proteins; and downregulation of SLC41A3 mRNA and protein. Mg2+ supplement attenuated pulmonary arterial pressure, right heart hypertrophy, and medial wall thickening of pulmonary arteries, and reversed the changes in the expression of Mg2+ transporters. Incubation of PASMCs with a high concentration of Mg2+ markedly inhibited PASMC proliferation and migration, and increased apoptosis, whereas a low level of Mg2+ produced the opposite effects. siRNA targeting Slc41a1/2, Cnnm2, and Trpm7 attenuated PASMC proliferation and migration, but promoted apoptosis; and Slc41a3 overexpression also caused similar effects. Moreover, siRNA targeting Slc41a1 or high [Mg2+] incubation inhibited hypoxia-induced upregulation and nuclear translocation of NFATc3 in PASMCs. The results, for the first time, provide the supportive evidence that Mg2+ transporters participate in the development of PH by modulating PASMC proliferation, migration, and apoptosis; and Mg2+ supplementation attenuates PH through regulation of Mg2+ transporters involving the NFATc3 signaling pathway.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Magnésio/metabolismo , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/metabolismo , Remodelação Vascular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Magnésio/farmacologia , Masculino , Monocrotalina/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Ratos , Regulação para Cima
5.
JCI Insight ; 4(24)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31852841

RESUMO

Clinical and preclinical studies show tissue-specific differences in tumorigenesis. Tissue specificity is controlled by differential gene expression. We prioritized genes that encode secreted proteins according to their preferential expression in normal lungs to identify candidates associated with lung cancer. Indeed, most of the lung-enriched genes identified in our analysis have known or suspected roles in lung cancer. We focused on the gene encoding neuron-derived neurotrophic factor (NDNF), which had not yet been associated with lung cancer. We determined that NDNF was preferentially expressed in the normal adult lung and that its expression was decreased in human lung adenocarcinoma and a mouse model of this cancer. Higher expression of NDNF was associated with better clinical outcome of patients with lung adenocarcinoma. Purified NDNF inhibited proliferation of lung cancer cells, whereas silencing NDNF promoted tumor cell growth in culture and in xenograft models. We determined that NDNF is downregulated through DNA hypermethylation near CpG island shores in human lung adenocarcinoma. Furthermore, the lung cancer-related DNA hypermethylation sites corresponded to the methylation sites that occurred in tissues with low NDNF expression. Thus, by analyzing the tissue-specific secretome, we identified a tumor-suppressive factor, NDNF, which is associated with patient outcomes in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/patologia , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinogênese/genética , Carcinogênese/patologia , Proliferação de Células/genética , Ilhas de CpG , Metilação de DNA , Conjuntos de Dados como Assunto , Regulação para Baixo , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Pessoa de Meia-Idade , Fatores de Crescimento Neural/análise , Fatores de Crescimento Neural/genética , Prognóstico , Proteínas Supressoras de Tumor/análise , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Biol Chem ; 294(33): 12339-12348, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31209108

RESUMO

Hedgehog (Hh) signaling is crucial for establishing complex cellular patterns in embryonic tissues and maintaining homeostasis in adult organs. In Drosophila, Interference hedgehog (Ihog) or its close paralogue Brother of Ihog (Boi) forms a receptor complex with Patched to mediate intracellular Hh signaling. Ihog proteins (Ihog and Boi) also contribute to cell segregation in wing imaginal discs through an unknown mechanism independent of their role in transducing the Hh signal. Here, we report a molecular mechanism by which the Ihog proteins mediate cell-cell interactions. We found that Ihog proteins are enriched at the site of cell-cell contacts and engage in trans-homophilic interactions in a calcium-independent manner. The region that we identified as mediating the trans-Ihog-Ihog interaction overlaps with the Ihog-Hh interface on the first fibronectin repeat of the extracellular domain of Ihog. We further demonstrate that Hh interferes with Ihog-mediated homophilic interactions by competing for Ihog binding. These results, thus, not only reveal a mechanism for Ihog-mediated cell-cell interactions but also suggest a direct Hh-mediated regulation of both intracellular signaling and cell adhesion through Ihog.


Assuntos
Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Hedgehog/genética , Glicoproteínas de Membrana/genética , Domínios Proteicos , Receptores de Superfície Celular/genética
7.
Mol Biol Cell ; 27(13): 2025-36, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27170182

RESUMO

Ubiquilin proteins contain a ubiquitin-like domain (UBL) and ubiquitin-associated domain(s) that interact with the proteasome and ubiquitinated substrates, respectively. Previous work established the link between ubiquilin mutations and neurodegenerative diseases, but the function of ubiquilin proteins remains elusive. Here we used a misfolded huntingtin exon I containing a 103-polyglutamine expansion (Htt103QP) as a model substrate for the functional study of ubiquilin proteins. We found that yeast ubiquilin mutant (dsk2Δ) is sensitive to Htt103QP overexpression and has a defect in the formation of Htt103QP inclusion bodies. Our evidence further suggests that the UBL domain of Dsk2 is critical for inclusion body formation. Of interest, Dsk2 is dispensable for Htt103QP degradation when Htt103QP is induced for a short time before noticeable inclusion body formation. However, when the inclusion body forms after a long Htt103QP induction, Dsk2 is required for efficient Htt103QP clearance, as well as for autophagy-dependent delivery of Htt103QP into vacuoles (lysosomes). Therefore our data indicate that Dsk2 facilitates vacuole-mediated clearance of misfolded proteins by promoting inclusion body formation. Of importance, the defect of inclusion body formation in dsk2 mutants can be rescued by human ubiquilin 1 or 2, suggesting functional conservation of ubiquilin proteins.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Autofagia , Proteínas de Transporte/metabolismo , Corpos de Inclusão/metabolismo , Lisossomos/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Vacúolos/metabolismo
8.
Innate Immun ; 21(6): 635-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25783839

RESUMO

LPS can activate the inflammatory cascades by inducing various inflammatory mediators, such as prostaglandin E(2) (PGE(2)) resulting from cyclooxygenase-2 (COX-2), and NO produced by inducible NO synthase (iNOS). Lysophosphatidic acid (LPA) has been demonstrated to participate in inflammation. This study aimed to clarify the impact and the involving mechanisms of LPA on LPS-incurred inflammation in macrophages. First, LPA appeared to attenuate LPS-induced protein and mRNA expression of COX-2 and iNOS genes, as well as production of PGE(2) and NO. By using selective inhibitors targeting various signaling players, the inhibitory G protein alpha subunit (Gα(i)) seemed to be involved in the effect of LPA; p38, ERK and NF-κB were involved in the LPS-mediated COX-2/PGE(2) pathway; and p38, JNK, phosphoinositide-3-kinase and NF-κB were involved in the LPS-mediated iNOS/NO pathway. LPA was able to diminish LPS-induced phosphorylation of p38 and Akt, as well as NF-κB p65 nuclear translocation. By utilization of inhibitors of COX-2 and iNOS, there appeared to be no modulation between the COX-2/PGE(2) and the iNOS/NO signaling pathways. Our findings demonstrate a clear anti-inflammatory role of LPA acting via Gα(i) in LPS-mediated inflammatory response in macrophages, owing, at least in part, to its suppressive effect on LPS-induced activation of p38, Akt and NF-κB.


Assuntos
Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Lisofosfolipídeos/farmacologia , Macrófagos/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Linhagem Celular , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Regulação para Baixo , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética
9.
J Cell Physiol ; 230(9): 2240-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25754990

RESUMO

Breast cancer is a common cancer leading to many deaths among females. Cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) are two highly expressed inflammatory mediators to be induced by the protein kinase C (PKC) signaling via various inflammatory stimuli and both contribute significantly to cancer metastasis/progression. Glucosamine has been shown to act as an anti-inflammation molecule. The aim of this study was to clarify the role and acting mechanism of glucosamine during the PKC-regulation of COX-2/IL-8 expression and the associated impact on breast cancer. In MCF-7 breast cancer cells, glucosamine effectively suppresses the PKC induction of COX-2 and IL-8 promoter activity, mRNA and protein levels, as well as the production of prostaglandin E(2) (PGE(2)) and IL-8. Glucosamine is able to promote COX-2 protein degradation in a calpain-dependent manner and IL-8 protein degradation in calpain-dependent and proteasome-dependent manners. The MAPK and NF-κB pathways are involved in PKC-induced COX-2 expression, but only the NF-κB pathway is involved in PKC-induced IL-8 expression. Glucosamine attenuates PKC-mediated IκBα phosphorylation, nuclear NF-κB translocation, and NF-κB reporter activation. Both PGE(2) and IL-8 promote cell proliferation and IL-8 induces cell migration; thus, glucosamine appears to suppress PKC-induced cell proliferation and migration. Furthermore, glucosamine significantly inhibits the growth of breast cancer xenografts and this is accompanied by a reduction in COX-2 and IL-8 expression. In conclusion, glucosamine seems to attenuate the inflammatory response in vitro and in vivo and this occurs, at least in part by targeting to the NF-κB signaling pathway, resulting in an inhibition of breast cancer cell growth.


Assuntos
Neoplasias da Mama/genética , Ciclo-Oxigenase 2/biossíntese , Interleucina-8/biossíntese , Proteína Quinase C/metabolismo , Animais , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Glucosamina/administração & dosagem , Glucosamina/genética , Humanos , Inflamação/genética , Inflamação/patologia , Células MCF-7 , Camundongos , RNA Mensageiro/biossíntese , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Am J Respir Cell Mol Biol ; 49(6): 1110-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23898954

RESUMO

Acute inflammation is often observed during acute lung injury (ALI) and acute respiratory distress syndrome. Glucosamine is known to act as an anti-inflammatory molecule. The effects of glucosamine on acute lung inflammation and its associated mechanisms remain unclear. The present study sought to address how glucosamine plays an anti-inflammatory role in acute lung inflammation in vivo and in vitro. Using the LPS intratracheal instillation-elicited rat lung inflammation model, we found that glucosamine attenuated pulmonary edema and polymorphonuclear leukocyte infiltration, as well as the production of TNF-α, IL-1ß, cytokine-induced neutrophil chemoattractant (CINC)-1, macrophage inflammatory protein (MIP)-2, and nitric oxide (NO) in the bronchoalveolar lavage fluid (BALF) and in the cultured medium of BALF cells. The expression of TNF-α, IL-1ß, IFN-γ, CINC-1, MIP-2, monocyte chemotactic protein-1, and inducible NO synthase (iNOS) in LPS-inflamed lung tissue was also suppressed by glucosamine. Using the rat alveolar epithelial cell line L2, we noted that the cytokine mixture (cytomix)-regulated production and mRNA expression of CINC-1 and MIP-2, NO production, the protein and mRNA expression of iNOS, iNOS mRNA stability, and iNOS promoter activity were all inhibited by glucosamine. Furthermore, glucosamine reduced LPS-mediated NF-κB signaling by decreasing IκB phosphorylation, p65 nuclear translocation, and NF-κB reporter activity. Overexpression of the p65 subunit restored the inhibitory action of glucosamine on cytomix-regulated NO production and iNOS expression. In conclusion, glucosamine appears to act as an anti-inflammatory molecule in LPS-induced lung inflammation, at least in part by targeting the NF-κB signaling pathway.


Assuntos
Glucosamina/administração & dosagem , Lipopolissacarídeos/toxicidade , Pneumonia/etiologia , Pneumonia/prevenção & controle , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Linhagem Celular , Citocinas/farmacologia , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Pneumonia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
11.
Pulm Pharmacol Ther ; 26(2): 195-204, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23128353

RESUMO

Airway epithelial cells play an important role against intruding pathogens. Glucosamine, a commonly used supplemental compound, has recently begun to be regarded as a potential anti-inflammatory molecule. This study aimed to uncover how glucosamine impacts on cellular proliferation in human alveolar epithelial cells (A549) and bronchial epithelial cells (HBECs). With trypan blue-exclusion assay, we observed that glucosamine (10, 20, 50 mM) caused a decrease in cell number at 24 and 48 h; with a flow cytometric analysis, we also noted an enhanced cell accumulation within the G(0)/G(1) phase at 24 h and induction of late apoptosis at 24 and 48 h by glucosamine (10, 20, 50 mM) in A549 cells and HBECs. Examination of phosphorylation in retinoblastoma (Rb) protein, we found an inhibitory effect by glucosamine at 20 and 50 mM. Glucosamine at 50 mM was demonstrated to elevate both the mRNA and protein expression of p53 and heme oxygenase-1 (HO-1), but also caused a reduction in p21 protein expression. In addition, glucosamine attenuated p21 protein stability via the proteasomal proteolytic pathway, as well as inducing p21 nuclear accumulation. Altogether, our results suggest that a high dose of glucosamine may inhibit cell proliferation through apoptosis and disturb cell cycle progression with a halt at G(0)/G(1) phase, and that this occurs, at least in part, by a reduction in Rb phosphorylation together with modulation of p21, p53 and HO-1 expression, and nuclear p21 accumulation.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Glucosamina/farmacologia , Pulmão/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/análise , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Pulmão/citologia , Fosforilação , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/análise
12.
Eur J Pharmacol ; 635(1-3): 219-26, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20307528

RESUMO

Inflammation is a complex process involving cytokine production to regulate host defense cascades in order to clear pathogenic agents. Upregulation of inflammatory cytokines, such as IL-6 and IL-8 by bacteria infection, occurs in pulmonary tissues and has been demonstrated to be critical to the lung inflammatory response. Glucosamine, primarily identified as an anti-arthritis supplement, has been also regarded as a potential anti-inflammatory agent. Thus we hypothesized that lipopolysaccharide (LPS) would activate IL-6 and IL-8 expressions in human primary bronchial epithelial cells and glucosamine could attenuate such an effect. The RT-PCR, real-time PCR, and ELISA analyses demonstrated that LPS-induced mRNAs encoding IL-6 and IL-8 and the subsequent secretion of IL-6 and IL-8 were inhibited by glucosamine treatment. MTT, alamarBlue, and annexin V apoptosis assays all suggested that this inhibition effect was not due to a cytotoxic effect mediated by glucosamine. Using the inhibitors of the MAP kinases and NFkappaB, it was revealed that p38, JNK and ERK, as well as NFkappaB, are all involved in LPS-induced IL-8 secretion; however only p38 is involved in LPS-induced IL-6 secretion. Immunoblot analysis further demonstrated that LPS-mediated phosphorylation of JNK and ERK, but not the LPS-induced NFkappaB translocation, was inhibited by glucosamine. Altogether, our results indicate that glucosamine can potently suppress LPS-induced inflammatory cytokine expression, at least in part via attenuation of MAPK activation.


Assuntos
Brônquios/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Glucosamina/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosamina/uso terapêutico , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...