Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 48(21): 10068-77, 2009 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-19780533

RESUMO

The reaction of [Ru(arene)Cl(2)](2) (arene = benzene, p-cymene) with [X(2)W(22)O(74)(OH)(2)](12-) (X = Sb(III), Bi(III)) in buffer medium resulted in four organo-ruthenium supported heteropolytungstates, [Sb(2)W(20)O(70)(RuC(6)H(6))(2)](10-) (1), [Bi(2)W(20)O(70)(RuC(6)H(6))(2)](10-) (2), [Sb(2)W(20)O(70)(RuC(10)H(14))(2)](10-) (3), and [Bi(2)W(20)O(70)(RuC(10)H(14))(2)](10-) (4), which have been characterized in solution by multinuclear ((183)W, (13)C, (1)H) NMR, UV-vis spectroscopy, electrochemistry, and in the solid state by single-crystal X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and elemental analysis. Polyanions 1, 2, and 4 crystallize in the triclinic system, space group P1 with the following unit cell parameters: K(5)Na(5)[Sb(2)W(20)O(70)(RuC(6)H(6))(2)] x 22 H(2)O (KNa-1), a = 12.1625(2) A, b = 13.1677(2) A, c = 16.0141(3) A, alpha = 78.9201(7) degrees, beta = 74.4442(8) degrees, gamma = 78.9019(8) degrees, and Z = 1; Cs(2)Na(8)[Bi(2)W(20)O(70)(RuC(6)H(6))(2)] x 30 H(2)O (CsNa-2), a = 11.6353(7) A, b = 13.3638(7) A, c = 16.7067(8) A, alpha = 79.568(2) degrees, beta = 71.103(2) degrees, gamma = 80.331(2) degrees, and Z = 1; Na(10)[Bi(2)W(20)O(70)(RuC(10)H(14))(2)].35H(2)O (Na-4), a = 15.7376(12) A, b = 15.9806(13) A, c = 24.2909(19) A, alpha = 92.109(4) degrees, beta = 101.354(4) degrees, gamma = 97.365(3) degrees, and Z = 2. Polyanions 1-4 consist of two (L)Ru(2+) (L = benzene or p-cymene) units linked to a [X(2)W(20)O(70)](14-) (X = Sb(III), Bi(III)) fragment via Ru-O(W) bonds resulting in an assembly with idealized C(2h) symmetry. Polyanions 1-4 are stable in solution as indicated by the expected (183)W, (13)C, and (1)H NMR spectra. The electrochemistry of 1-4 is described by considering the reduction and the oxidation processes. The nature of the arene in Ru(arene) has practically no influence on the formal potentials of the W-centers, which are more sensitive to the Sb or Bi hetero atoms. The results suggest that the respective Sb- and Bi derivatives have very different pK(a) values, with the reduced form of 1 being the most basic, thus permitting the observation of two well-developed voltammetric waves at pH 6. In contrast, the identity of the arene influences the oxidation processes, thus permitting to distinguish them. A strong electrocatalytic water oxidation peak is observed that is more positive than the one corresponding to the Ru(arene) oxidation process. Also a stepwise oxidation of the Ru(benzene) group could be observed at pH 3. The catalytic efficiency, on the other hand, of 1-4 toward the oxidation of n-hexadecane and p-xylene illustrated the effect of ruthenium substitution on the polyanion catalytic performance.

3.
Inorg Chem ; 46(5): 1737-40, 2007 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-17295478

RESUMO

The reaction of K28Li5H7[P8W48O184].92H2O with early lanthanides under hydrothermal and conventional conditions yields novel structures of the molecular formula Ln4(H2O)28K6Li7[K subsetP8W48O184(H4W4O12)2Ln2(H2O)10] congruent with 57H2O, Ln = La (1), Ce (2, 2a), Pr (3), Nd (4), in which the central cavity of the precursor anion is occupied by lanthanide cations and H4W4O12 moieties. The new heteropolyanions were characterized by elemental analysis, infrared spectroscopy, 31P NMR, and X-ray crystallography. All of the crystals are monoclinic, space group C2/m, with lattice constants (A, Epsilon) a = 33.061(3), b = 30.986(3), c = 15.1649(13), beta = 103.607(2), (1); a = 33.0577(16), b = 31.0562(15), c = 15.2320(7), beta = 104.015(2), (2); a = 33.0577(16), b = 31.0562(15), c = 15.2320(7), beta = 104.015(2), (2a); a = 33.007(2), b = 31.060(2), c = 15.2129(10), beta = 104.0140(10), (3); a = 32.913(19), b = 31.155(18), c = 15.135(9), beta = 103.495(11), (4); and Z = 2.

4.
Inorg Chem ; 45(21): 8575-83, 2006 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17029368

RESUMO

The benzene-Ru(II)-supported dilacunary decatungstosilicate [{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-SiW10O36)]4- and the isostructural decatungstogermanate [{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-GeW10O36)]4- have been synthesized and characterized by multinuclear solution NMR, IR, elemental analysis, and electrochemistry. Single-crystal X-ray analysis was carried out on K4[{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-SiW10O36)].9H2O (K-1), which crystallizes in the orthorhombic system, space group Pmn2(1), with a = 13.6702(3) A, b = 16.2419(4) A, c = 12.1397(2) A, and Z = 2, and on K4[{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-GeW10O36)].7H2O (K-2), which also crystallizes in the orthorhombic system, space group Pmn2(1), with a = 13.6684(12) A, b = 16.297(2) A, c = 12.1607(13) A, and Z = 2. Polyanions 1 and 2 consist of a Ru(C6H6)(H2O) group and a Ru(C6H6) group linked to a dilacunary (gamma-XW10O36) Keggin fragment resulting in an assembly with idealized Cs symmetry. The Ru(C6H6)(H2O) group is bound at the lacunary polyanion site via two Ru-O(W) bonds, whereas the Ru(C6H6) group is bound on the side via three Ru-O(W) bonds. Polyanions 1 and 2 were synthesized in aqueous acidic medium at pH 2.5 by the reaction of [Ru(C6H6)Cl2]2 with [gamma-SiW10O36]8- and [gamma-GeW10O36]8-, respectively. The formal potentials are roughly the same for the first W waves of 1 and 2. However, important differences appear for the second W waves. These observations indicate different acid-base properties for the reduced forms of 1 and 2. Three oxidation processes were detected: the oxidation of the Ru center is followed first by irreversible electrocatalytic processes of the Ru-benzene moiety and then of the electrolyte. Comparison of this behavior with that of the precursor reagent, [Ru(C6H6)Cl2]2, was useful to understand the main oxidation processes. A ligand substitution reaction was observed upon addition of dimethyl sulfoxide (dmso) to 1, 2, or [Ru(C6H6)Cl2]2. This reaction facilitates substantially the oxidation of the Ru center. The dmso was oxidized with large electrocatalytic currents more efficiently in the presence of 1 and 2 than with [Ru(C6H6)Cl2]2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...