Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6672): 792-796, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37972183

RESUMO

Upon cooling, condensed-matter systems typically transition into states of lower symmetry. The converse-i.e., the emergence of higher symmetry at lower temperatures-is extremely rare. In this work, we show how an unusually isotropic magnetoresistance in the highly anisotropic, one-dimensional conductor Li0.9Mo6O17 and its temperature dependence can be interpreted as a renormalization group (RG) flow toward a so-called separatrix. This approach is equivalent to an emergent symmetry in the system. The existence of two distinct ground states, Mott insulator and superconductor, can then be traced back to two opposing RG trajectories. By establishing a direct link between quantum field theory and an experimentally measurable quantity, we uncover a path through which emergent symmetry might be identified in other candidate materials.

2.
Proc Math Phys Eng Sci ; 476(2239): 20200088, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32831608

RESUMO

Topological insulators are frequently also one of the best-known thermoelectric materials. It has been recently discovered that in three-dimensional (3D) topological insulators each skew dislocation can host a pair of one-dimensional (1D) topological states-a helical Tomonaga-Luttinger liquid (TLL). We derive exact analytical formulae for thermoelectric Seebeck coefficient in TLL and investigate up to what extent one can ascribe the outstanding thermoelectric properties of Bi2Te3 to these 1D topological states. To this end we take a model of a dense dislocation network and find an analytic formula for an overlap between 1D (the TLL) and 3D electronic states. Our study is applicable to a weakly n-doped Bi2Te3 but also to a broader class of nano-structured materials with artificially created 1D systems. Furthermore, our results can be used at finite frequency settings, e.g. to capture transport activated by photo-excitations.

3.
Sci Adv ; 5(7): eaar8027, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31281877

RESUMO

We report on an emerging symmetry axis in the magnetoresistance of bulk single crystals of quasi-one-dimensional Li0.9Mo6O17 below T min = 25 K, the temperature at which the electrical resistivity experiences a minimum. Detailed angle-dependent magnetoresistance sweeps reveal that this symmetry axis is induced by the development of a negative magnetoresistance, which is suppressed only for magnetic fields oriented along the poles of the MoO6 octahedra that form the conducting chains. We show that this unusual negative magnetoresistance is consistent with the melting of dark excitons, composed of previously omitted orbitals within the t 2g manifold that order below T min. The unveiled symmetry axis in directional magnetic fields not only provides evidence for the crystallization of these dark excitons but also sheds new light on the long-standing mystery of the metal-insulator transition in Li0.9Mo6O17.

4.
J Phys Condens Matter ; 31(10): 105601, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30572316

RESUMO

The problem of photoemission from a quasi-1D material is studied. We identify two issues that play a key role in the detection of gapless Tomonaga-Luttinger liquid (TLL) phase. Firstly, we show how a disorder-backward scattering as well as forward scattering component-is able to significantly obscure the TLL states, hence the initial state of angle resolved photo-emission spectroscopy (ARPES). Secondly, we investigate the photo-electron propagation towards a sample's surface. We focus on the scattering path operator contribution to the final state of ARPES. We show that, in the particular conditions set by the 1D states, one can derive an exact analytical solution for this intermediate stage of ARPES. The solution shows that for particular energies of incoming photons the intensity of photo-current may be substantially reduced. Finally, we put together the two aspects (the disorder and the scattering path operator) to show the full, disruptive force of any inhomogeneities on the ARPES amplitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...