Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(22): 14176-14186, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768371

RESUMO

Two-dimensional (2D) organic-inorganic metal halide perovskites have gained immense attention as alternatives to three-dimensional (3D) perovskites in recent years. The hydrophobic spacers in the layered structure of 2D perovskites make them more moisture-resistant than 3D perovskites. Moreover, they exhibit unique anisotropic electrical transport properties due to a structural confinement effect. In this study, four lead-free Dion-Jacobson (DJ) Sn-based phase perovskite single crystals, 3AMPSnI4, 4AMPSnI4, 3AMPYSnI4, and 4AMPYSnI4 [AMP = (aminomethyl)-piperidinium, AMPY = (aminomethyl)pyridinium] are reported. Results reveal structural differences between them impacting the resulting optical properties. Namely, higher octahedron distortion results in a higher absorption edge. Density functional theory (DFT) is also performed to determine the trends in energy band diagrams, exciton binding energies, and formation energies due to structural differences among the four single crystals. Finally, a field-effect transistor (FET) based on 4AMPSnI4 is demonstrated with a respectable hole mobility of 0.57 cm2 V-1 s-1 requiring a low threshold voltage of only -2.5 V at a drain voltage of -40 V. To the best of our knowledge, this is the third DJ-phase perovskite FET reported to date.

2.
Small ; 20(25): e2307774, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200683

RESUMO

Tin (Sn)-based perovskites are being investigated in many optoelectronic applications given their similar valence electron configuration to that of lead-based perovskites and the potential environmental hazards of lead-based perovskites. However, the formation of high-quality Sn-based perovskite films faces several challenges, mainly due to the easy oxidation of Sn2+ to Sn4+ and the fast crystallization rate. Here, to develop an environmentally friendly process for Sn-based perovskite fabrication, a series of natural antioxidants are studied as additives and ascorbic acid (VitC) is found to have a superior ability to inhibit the oxidation problem. A common cyclic molecule, 18-Crown-6, is further added as a second additive, which synergizes with VitC to significantly reduce the nonradiative recombination pathways in the PEA2SnI4 film. This synergistic effect greatly improves the performance of 2D red Sn-based PeLED, with a maximum external quantum efficiency of 1.87% (≈9 times that of the pristine device), a purer color, and better bias stability. This work demonstrates the potential of the dual-additive approach in enhancing the performance of 2D Sn-based PeLEDs, while the use of these environmentally friendly additives contributes to their future sustainability.

3.
Macromol Rapid Commun ; 45(1): e2300058, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36913597

RESUMO

Up to now, researches on the mobility-stretchability of semiconducting polymers are extensively investigated, but little attention was  paid to their morphology and field-effect transistor characteristics under compressive strains, which is equally crucial in wearable electronic applications. In this work, a contact film transfer method is applied to evaluate the mobility-compressibility properties of conjugated polymers. A series of isoindigo-bithiophene conjugated polymers with symmetric carbosilane side chains (P(SiSi)), siloxane-terminated alkyl side chains (P(SiOSiO)), and combined asymmetric side chains (P(SiOSi)) are investigated. Accordingly, a compressed elastomer slab is used to transfer and compress the polymer films by releasing prestrain, and the morphology and mobility evolutions of these polymers are tracked. It is found that P(SiOSi) outperforms the other symmetric polymers including P(Si─Si) and P(SiO─SiO), having the ability to dissipate strain with its shortened lamellar spacing and orthogonal chain alignment. Notably, the mechanical durability of P(SiOSi) is also enhanced after consecutive compress-release cycles. In addition, the contact film transfer technique is demonstrated to be applicable to investigate the compressibility of different semiconducting polymers. These results demonstrate a comprehensive approach to understand the mobility-compressibility properties of semiconducting polymers under tensile and compressive strains.


Assuntos
Elastômeros , Polímeros , Polímeros/química , Siloxanas
4.
ACS Nano ; 17(23): 23478-23487, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38009599

RESUMO

Solar-driven water splitting powered by photovoltaics enables efficient storage of solar energy in the form of hydrogen fuel. In this work, we demonstrate efficient solar-to-hydrogen conversion using perovskite (PVK) tandem photovoltaics and a halogen-modulated metal-organic framework (MOF) electrocatalyst. By substituting tetrafluoroterephthalate (TFBDC) for terephthalic (BDC) ligands in a nickel-based MOF, we achieve a 152 mV improvement in oxygen evolution reaction (OER) overpotential at 10 mA·cm2. Through X-ray photoelectron spectroscopy (XPS), X-ray adsorption structure (XAS) analysis, theoretical simulation, and electrochemical results, we demonstrated that the introduction of fluorine atoms enhanced the intrinsic activity of Ni sites as well as the transfer property and accessibility of the MOF. Using this electrocatalyst in a bias-free photovoltaic electrochemical (PV-EC) system with a PVK/organic tandem solar cell, we achieve 6.75% solar-to-hydrogen efficiency (ηSTH). We also paired the electrocatalyst with a PVK photovoltaic module to drive water splitting at 206.7 mA with ηSTH of 10.17%.

5.
Adv Sci (Weinh) ; 10(26): e2302232, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400366

RESUMO

Quasi-2D perovskites have recently flourished in the field of luminescence due to the quantum-confinement effect and the efficient energy transfer between different n phases resulting in exceptional optical properties. However, owing to the lower conductivity and poor charge injection, quasi-2D perovskite light-emitting diodes (PeLEDs) typically suffer from low brightness and high-efficiency roll-off at high current densities compared to 3D perovskite-based PeLEDs, which is undoubtedly one of the most critical issues in this field. In this work, quasi-2D PeLEDs with high brightness, reduced trap density, and low-efficiency roll-off are successfully demonstrated by introducing a thin layer of conductive phosphine oxide at the perovskite/electron transport layer interface. The results surprisingly show that this additional layer does not improve the energy transfer between multiple quasi-2D phases in the perovskite film, but purely improves the electronic properties of the perovskite interface. On the one hand, it passivates the surface defects of the perovskite film; on the other hand, it promotes electron injection and prevents hole leakage across this interface. As a result, the modified quasi-2D pure Cs-based device shows a maximum brightness of > 70,000 cd m-2 (twice that of the control device), a maximum external quantum efficiency (EQE) of > 10% and a much lower efficiency roll-off at high bias voltages.

6.
Adv Mater ; 35(22): e2300945, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36912205

RESUMO

Metal-organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan-metal links (e.g., nickel, as for Ni(DMBD)-MOF) is designed. The crystal structure is solved from microcrystals by a continuous-rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)-MOF due to the Ni-S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)-MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non-thiol (e.g., 1,4-benzene dicarboxylic acid) analog (BDC)-MOF, because it poses fewer energy barriers during the rate-limiting *O intermediate formation step. Iron-substituted NiFe(DMBD)-MOF achieves a current density of 100 mA cm-2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis.

7.
ACS Appl Mater Interfaces ; 15(12): 15745-15757, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920493

RESUMO

An integrated strategy of molecular design and conjugated polymer doping is proposed to improve the electronic characteristics for organic field effect transistor (OFET) applications. Here, a series of soluble naphthalene diimide (NDI)-based random donor-acceptor copolymers with selenophene π-conjugated linkers and four acceptors with different electron-withdrawing strengths (named as rNDI-N/S/NN/SS) are synthesized, characterized, and used for OFETs. N-type doping of NDI-based random copolymers using (12a,18a)-5,6,12,12a,13,18,18a,19-octahydro-5,6-dimethyl-13,18[1',2']-benzenobisbenzimidazo[1,2-b:2',1'-d]benzo[i][2.5]benzodiazocine potassium triflate adduct (DMBI-BDZC) is successfully demonstrated. The undoped rNDI-N, rNDI-NN, and rNDI-SS samples exhibit ambipolar charge transport, while rNDI-S presents only a unipolar n-type characteristic. Doping with DMBI-BDZC significantly modulates the performance of rNDI-N/S OFETs, with a 3- to 6-fold increase in electron mobility (µe) for 1 wt % doped device due to simultaneous trap mitigation, lower contact resistance (RC), and activation energy (EA), and enhanced crystallinity and edge-on orientation for charge transport. However, the doping of intrinsic pro-quinoidal rNDI-NN/SS films exhibits unchanged or even reduced device performance. These findings allow us to manipulate the energy levels by developing conjugated copolymers based on various acceptors and quinoids and to optimize the dopant-polymer semiconductor interactions and their impacts on the film morphology and molecular orientation for enhanced charge transport.

8.
Small ; 19(20): e2207734, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36794296

RESUMO

Two-dimensional (2D) tin (Sn)-based perovskites have recently received increasing research attention for perovskite transistor application. Although some progress is made, Sn-based perovskites have long suffered from easy oxidation from Sn2+ to Sn4+ , leading to undesirable p-doping and instability. In this study, it is demonstrated that surface passivation by phenethylammonium iodide (PEAI) and 4-fluorophenethylammonium iodide (FPEAI) effectively passivates surface defects in 2D phenethylammonium tin iodide (PEA2 SnI4 ) films, increases the grain size by surface recrystallization, and p-dopes the PEA2 SnI4 film to form a better energy-level alignment with the electrodes and promote charge transport properties. As a result, the passivated devices exhibit better ambient and gate bias stability, improved photo-response, and higher mobility, for example, 2.96 cm2 V-1 s-1 for the FPEAI-passivated films-four times higher than the control film (0.76 cm2 V-1 s-1 ). In addition, these perovskite transistors display non-volatile photomemory characteristics and are used as perovskite-transistor-based memories. Although the reduction of surface defects in perovskite films results in reduced charge retention time due to lower trap density, these passivated devices with better photoresponse and air stability show promise for future photomemory applications.

9.
Nanomaterials (Basel) ; 12(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500972

RESUMO

This study is devoted to investigating the stability of metal-organic framework (MOF)-hybrid perovskites consisting of CH3NH3PbI3 (MAPbI3) and UiO-66 without a functional group and UiO-66 with different COOH, NH2,and F functional groups under external influences including heat, light, and humidity. By conducting crystallinity, optical, and X-ray photoelectron spectra (XPS) measurements after long-term aging, all of the prepared MAPbI3@UiO-66 nanocomposites (with pristine UiO-66 or UiO-66 with additional functional groups) were stable to light soaking and a relative humidity (RH) of 50%. Moreover, the UiO-66 and UiO-66-(F)4 hybrid perovskite films possessed a higher heat tolerance than the other two UiO-66 with the additional functional groups of NH2 and COOH. Tthe MAPbI3@UiO-66-(F)4 delivered the highest stability and improved optical properties after aging. This study provides a deeper understanding of the impact of the structure of hybrid MOFs on the stability of the composite films.

10.
Nanoscale ; 14(46): 17409-17417, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383153

RESUMO

In this study, a molecule with a three-dimensional (3D) cyclic structure, a cryptand, is demonstrated as an effective additive for the quasi-two-dimensional (quasi-2D) PEA2Csn-1PbnBr3n+1 (n = 3, herein) to improve its light-emitting performance. The cryptand can effectively regulate the phase distribution of the quasi-2D perovskite through its intense interaction with PbBr2, benefitting from its cage-like structure that can better capture the Pb2+ ions. Due to the inhibited growth of the low-n phases, a much-concentrated phase distribution is achieved for the cryptand-containing films. Moreover, its constituent O/N atoms can passivate the uncoordinated Pb2+ ions to improve the film quality. Such a synergistic effect thereby facilitates the charge/energy transfer among the multiple phases and reduces the non-radiative recombination. As a result, the quasi-2D perovskite light-emitting diode (PeLED) with the optimized cryptand doping ratio is shown to deliver the highest luminance (Lmax) of 15 532 cd m-2 with a highest external quantum efficiency (EQE) of 4.02%. Compared to the pristine device, Lmax is enhanced by ∼5 times and EQE is enhanced by ∼10 times.

11.
Adv Sci (Weinh) ; 9(31): e2203025, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35986439

RESUMO

Three-terminal synaptic transistor has drawn significant research interests for neuromorphic computation due to its advantage of facile device integrability. Lately, bulk-heterojunction-based synaptic transistors with bipolar modulation are proposed to exempt the use of an additional floating gate. However, the actual correlation between the channel's ambipolarity, memory characteristic, and synaptic behavior for a floating-gate free transistor has not been investigated yet. Herein, by studying five diketopyrrolopyrrole-benzotriazole dual-acceptor random conjugated polymers, a clear correlation among the hole/electron ratio, the memory retention characteristic, and the synaptic behavior for the polymer channel layer in a floating-gate free transistor is described. It reveals that the polymers with balanced ambipolarity possess better charge trapping capabilities and larger memory windows; however, the high ambipolarity results in higher volatility of the memory characteristics, namely poor memory retention capability. In contrast, the polymer with a reduced ambipolarity possesses an enhanced memory retention capability despite showing a reduced memory window. It is further manifested that this enhanced charge retention capability enables the device to present artificial synaptic characteristics. The results highlight the importance of the channel's ambipolarity of floating-gate free transistors on the resultant volatile memory characteristics and synaptic behaviors.


Assuntos
Polímeros , Sinapses
12.
Small ; 18(26): e2201076, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35638469

RESUMO

The oxygen evolution reaction (OER) is crucial to electrochemical hydrogen production. However, designing and fabricating efficient electrocatalysts still remains challenging. By confinedly coordinating organic ligands with metal species in layered double hydroxides (LDHs), an innovative LDHs-assisted approach is developed to facilely synthesize freestanding bimetallic 2D metal-organic framework nanosheets (2D MOF NSs), preserving the metallic components and activities in OER. Furthermore, the research has demonstrated that the incorporation of carboxyl organic ligands coordinated with metal atoms as proton transfer mediators endow 2D MOF NSs with efficient proton transfer during the electrochemical OHads  â†’ Oads transition. These freestanding NiFe-2D MOF NSs require a small overpotential of 260 mV for a current density of 10 mA cm-2 . When this strategy is applied to LDH nanosheets grown on nickel foam, the overpotential can be reduced to 221 mV. This outstanding OER activity supports the capability of multimetallic organic frameworks for the rational design of water oxidation electrocatalysts. This strategy provides a universal path to the synthesis of 2D MOF NSs that can be used as electrocatalysts directly.

13.
Small ; 18(23): e2107834, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35532078

RESUMO

As the power conversion efficiency (PCE) of organic photovoltaics (OPVs) approaches 19%, increasing research attention is being paid to enhancing the device's long-term stability. In this study, a robust interface engineering of graphene oxide nanosheets (GNS) is expounded on improving the thermal and photostability of non-fullerene bulk-heterojunction (NFA BHJ) OPVs to a practical level. Three distinct GNSs (GNS, N-doped GNS (N-GNS), and N,S-doped GNS (NS-GNS)) synthesized through a pyrolysis method are applied as the ZnO modifier in inverted OPVs. The results reveal that the GNS modification introduces passivation and dipole effects to enable better energy-level alignment and to facilitate charge transfer across the ZnO/BHJ interface. Besides, it optimizes the BHJ morphology of the photoactive layer, and the N,S doping of GNS further enhances the interaction with the photoactive components to enable a more idea BHJ morphology. Consequently, the NS-GNS device delivers enhanced performance from 14.5% (control device) to 16.5%. Moreover, the thermally/chemically stable GNS is shown to stabilize the morphology of the ZnO electron transport layer (ETL) and to endow the BHJ morphology of the photoactive layer grown atop with a more stable thermodynamic property. This largely reduces the microstructure changes and the associated charge recombination in the BHJ layer under constant thermal/light stresses. Finally, the NS-GNS device is demonstrated to exhibit an impressive T80 lifetime (time at which PCE of the device decays to 80% of the initial PCE) of 2712 h under a constant thermal condition at 65 °C in a glovebox and an outstanding photostability with a T80 lifetime of 2000 h under constant AM1.5G 1-sun illumination in an N2 -controlled environment.

14.
Nanoscale ; 14(14): 5472-5481, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322845

RESUMO

The development of single-component organic solar cells (SCOSCs) using only one photoactive component with a chemically bonded D/A structure has attracted increasing research attention in recent years. At represent, most relevant studies focus on comparing the performance difference between a donor-acceptor (D-A) conjugated block copolymer (CBC) and the commensurate blending systems based on the same donor and acceptor segments, and still there are no reports on the impact of the segment ratio for a certain D-A CBC on the resultant photovoltaic performance. In this study, we synthesized a D-A all-conjugated polymers based on an n-type PNDI2T block and a p-type PBDB-T donor block but with three different segment ratios (P1-P3) and demonstrate the significance of the D/A segment ratio on photovoltaic performance. Our results reveal that the n-type PNDI2T block plays a more critical role in the inter/intra-chain charge transfer. P1 with a higher content of PNDI2T delivers superior exciton dissociation and charge transfer behavior than P2 and P3, benefitting from its more balanced hole/electron mobility. In addition, a higher packing regularity associated with a more dominant face-on orientation is also observed for P1. As a result, SCOSC based on P1 exhibits the highest PCE among the synthesized CBCs. It also possesses a minimal energy loss due to the better suppressed non-radiative recombination loss. This work provides the first discussion of the impact of the segment ratio for a D-A all-conjugated block copolymer and signifies the critical role of the n-type segment in designing high-performance single-component CBCs.

15.
Chem Sci ; 13(4): 996-1002, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35211264

RESUMO

For organic semiconductors, the development of electron-deficient building blocks has lagged far behind that of the electron-rich ones. Moreover, it remains a significant challenge to design organic molecules with efficient charge transport and strong solid-state emission simultaneously. Herein, we describe a facile synthetic route toward a new π-acceptor imide building block, namely 2,3-fluoranthene imide, based on which four regioregular small molecules (F1-F4) are synthesized by tuning the imide orientations and the central linkage bridges. All molecules exhibit attractive aggregation-induced emission (AIE) characteristics with strong far-red emission in the powder state, and F3 shows the highest photoluminescence quantum yield of 5.9%. F1 and F3 with a thiophene bridge present an obvious p-type characteristic, while for F3 with an outward imide orientation, the maximum hole mobility from a solution-processed field-effect transistor (FET) device reaches 0.026 cm2 V-1 s-1, being ∼104 times higher than the value of F1 with an inward imide orientation. By using a fluorinated thiophene bridge, the resulting F2 and F4 can be turned into n-type semiconductors, showing an electron mobility of ∼1.43 × 10-4 and ∼3.34 × 10-5 cm2 V-1 s-1, respectively. Our work not only demonstrates that asymmetric 2,3-fluoranthene imide is a promising building block for constructing organic materials with high carrier mobility and strong solid-state emission, but also highlights the importance of regioregular structures in the materials' properties.

16.
ACS Appl Mater Interfaces ; 14(7): 9587-9596, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142213

RESUMO

In this study, two natural small molecules, α-cyclodextrin (α-CD) and ß-cyclodextrin (ß-CD), are used as additives to improve the performance of quasi-2D PEA2Csn-1PbnBr3n+1 (n = 3, herein) PeLEDs. Both of them are shown to efficiently passivate the quasi-2D perovskite films to afford improved film quality and morphology, but they exhibit distinct phase regulation behaviors possibly due to their different pore sizes. It reveals that α-CD effectively suppresses the formation of the low-n phases (n ≤ 2), while ß-CD better regulates the phase with a medium-n value (n = 3). Because of effectively suppressing the formation of low-n phases, the CD-assisted quasi-2D perovskite films possess facilitated exciton energy transfer and reduced nonradiative recombination. Consequently, the optimized α-CD-derived PeLED shows the highest luminance (Lmax) of 37,825 cd/m2 with an external quantum efficiency (EQE) of 3.81%, while the ß-CD-derived PeLED delivers a lower Lmax of 24,793 cd/m2 with an EQE of 3.09%. Compared to the pristine device, Lmax is enhanced by 6.3 and 3.8 times for α-CD- and ß-CD-based PeLEDs, respectively, and EQE is enhanced by ∼4.8 times for both devices; besides, both CD-assisted devices also exhibit improved color purity and a lower bias dependency of electroluminescent intensity.

17.
Adv Sci (Weinh) ; 9(8): e2105190, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064648

RESUMO

Neuromorphic computation possesses the advantages of self-learning, highly parallel computation, and low energy consumption, and is of great promise to overcome the bottleneck of von Neumann computation. In this work, a series of poly(3-hexylthiophene) (P3HT)-based block copolymers (BCPs) with different coil segments, including polystyrene, poly(2-vinylpyridine) (P2VP), poly(2-vinylnaphthalene), and poly(butyl acrylate), are utilized in photosynaptic transistor to emulate paired-pulse facilitation, spike time/rate-dependent plasticity, short/long-term neuroplasticity, and learning-forgetting-relearning processes. P3HT serves as a carrier transport channel and a photogate, while the insulating coils with electrophilic groups are for charge trapping and preservation. Three main factors are unveiled to govern the properties of these P3HT-based BCPs: i) rigidity of the insulating coil, ii) energy levels between the constituent polymers, and iii) electrophilicity of the insulating coil. Accordingly, P3HT-b-P2VP-based photosynaptic transistor with a sought-after BCP combination demonstrates long-term memory behavior with current contrast up to 105 , short-term memory behavior with high paired-pulse facilitation ratio of 1.38, and an ultralow energy consumption of 0.56 fJ at an operating voltage of -0.0003 V. As far as it is known, this is the first work to utilize conjugated BCPs in an electret-free photosynaptic transistor showing great potential to the artificial intelligence technology.

18.
Adv Mater ; 34(7): e2104782, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34866252

RESUMO

Most of the reported 2D Ruddlesden-Popper (RP) lead halide perovskites with the general formula of An +1 Bn X3 n +1 (n = 1, 2, …) comprise layered perovskites separated by A-site-substituted organic spacers. To date, only a small number of X-site-substituted RP perovskites have been reported. Herein, the first inorganic-cation pseudohalide 2D phase perovskite single crystal, Cs2 Pb(SCN)2 Br2 , is reported. It is synthesized by the antisolvent vapor-assisted crystallization (AVC) method at room temperature. It exhibits a standard single-layer (n = 1) Ruddlesden-Popper structure described in space group of Pmmn (#59) and has a small separation (d = 1.69 Å) between the perovskite layers. The SCN- anions are found to bend the 2D Pb(SCN)2 Br2 framework slightly into a kite-shaped octahedron, limiting the formation of a quasi-2D perovskite structure (n > 1). This 2D single crystal exhibits a reversible first-order phase transformation to 3D CsPbBr3 (Pm3m #221) at 450 K. It has a low exciton binding energy of 160 meV-one of the lowest for 2D perovskites (n = 1). A Cs2 Pb(SCN)2 Br2 -single-crystal photodetector is demonstrated with respectable responsivity of 8.46 mA W-1 and detectivity of ≈1.2 × 1010 Jones at a low bias voltage of 0.5 V.

19.
Nanoscale ; 13(47): 20281-20288, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34817488

RESUMO

In the electrochemical water splitting process, integrating hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in the same electrolyte with the same catalyst is highly beneficial for increasing the energy efficiency and reducing the fabrication cost. However, most OER catalysts are unstable in the acidic solution, while HER shows poor kinetics in the alkaline solution, which hinders the scale-up application of electro-catalytic water splitting. In this work, a CoP/Co3O4 heterostructure is firstly fabricated and then O and P defects are introduced via surface engineering (s-CoP/Co3O4). The as-prepared material was employed as the catalyst towards electrochemical water splitting in an alkaline environment. In alkaline HER, a current density of -10 mA cm-2 can be achieved at an overpotential of 106 mV vs. RHE. In the OER process, the overpotential of s-CoP/Co3O4 electrode is only 211 mV vs. RHE at 10 mA cm-2 in 1 M KOH, and the corresponding Tafel slope is only 58.4 mV dec-1 so that the s-CoP/Co3O4 electrode could be used as the bifunctional catalyst for alkaline water splitting. This work provides a simple and low-cost approach to fabricate a Co-based heterojunction electrode with unsaturated metal sites to improve the electro-catalytic activities towards water splitting.

20.
Chem Soc Rev ; 50(23): 13090-13128, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34676850

RESUMO

Hybrid metal-halide perovskite solar cells (PVSCs) have drawn unprecedented attention during the last decade due to their superior photovoltaic performance, facile and low-cost fabrication, and potential for roll-to-roll mass production and application for portable devices. Through collective composition, interface, and process engineering, a comprehensive understanding of the structure-property relationship and carrier dynamics of perovskites has been established to help achieve a very high certified power conversion efficiency (PCE) of 25.5%. Apart from material properties, the modified heterojunction design and device configuration evolution also play crucial roles in enhancing the efficiency. The adoption and/or modification of heterojunction structures have been demonstrated to effectively suppress the carrier recombination and potential losses in PVSCs. Moreover, the employment of multijunction structures has been shown to reduce thermalization losses, achieving a high PCE of 29.52% in perovskite/silicon tandem solar cells. Therefore, understanding the evolution of the device configuration of PVSCs from single junction, heterojunction to multijunction designs is helpful for the researchers in this field to further boost the PCE beyond 30%. Herein, we summarize the evolution and progress of the single junction, heterojunction and multijunction designs for high-performance PVSCs. A comprehensive review of the fundamentals and working principles of these designs is presented. We first introduce the basic working principles of single junction PVSCs and the intrinsic properties (such as crystallinity and defects) in perovskite films. Afterwards, the progress of diverse heterojunction designs and perovskite-based multijunction solar cells is synopsized and reviewed. Meanwhile, the challenges and strategies to further enhance the performance are also summarized. At the end, the perspectives on the future development of perovskite-based solar cells are provided. We hope this review can provide the readers with a quick catchup on this emerging solution-processable photovoltaic technology, which is currently at the transition stage towards commercialization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...