Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicology ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020070

RESUMO

We investigated the potential ecological risks and harm to aquatic organisms posed by anionic surfactants such as α-olefin sulfonate (AOS), which are commonly found in industrial and consumer products, including detergents. This study assessed acute (96-h) and subchronic (14-day) responses using antioxidant activity, protein levels, and histopathological changes in Tubifex tubifex exposed to different AOS concentrations (10% of the LC50, 20% of the LC50, and a control). Molecular docking was used to investigate the potential interactions between the key stress biomarker enzymes (superoxide dismutase, catalase, and cytochrome c oxidase) of Tubifex tubifex. Acute AOS exposure showed a concentration-dependent decrease in survival, and the general unified threshold (GUTS) model revealed that survivorship is linked to individual response patterns rather than random (stochastic) fluctuations. The GUTS model also revealed dose-dependent toxicity patterns in Tubifex tubifex exposed to α-olefin sulfonate (AOS), with adaptive mechanisms at lower concentrations but significant increases in mortality beyond a certain threshold, emphasizing the role of the AOS concentration in shaping its toxicological impact. Exposure to AOS disrupted antioxidant activity, inducing oxidative stress, with GST and GPx showing positive associations with surfactant concentration and increased lipid peroxidation (elevated MDA levels); moreover, AOS exposure decreased protein concentration, signifying disturbances in vital cellular processes. Histopathological examinations revealed various tissue-level alterations, including cellular vacuolation, cytoplasmic swelling, inflammation, necrosis, and apoptosis. Molecular docking analysis demonstrated interactions between AOS and enzymes (-catalase, superoxide dismutase, and cytochrome c oxidase) in Tubifex tubifex, including hydrophobic and hydrogen bond interactions, with the potential to disrupt enzyme structures and activities, leading to cellular process disruptions, oxidative stress, and tissue damage. According to the species sensitivity distribution (SSD), the difference in toxicity between Tilapia melanopleura (higher sensitivity) and Daphnia magna (low sensitivity) to AOS suggests distinct toxicokinetic and toxicodynamic mechanisms attributable to more complex physiology in Tilapia and efficient detoxification in Daphnia due to its smaller size.

2.
Chemosphere ; 361: 142542, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844104

RESUMO

This study aimed to understand the effects of freshwater acidification, driven by industrial runoff, agricultural activities, and atmospheric deposition, on the freshwater mollusk Bellamya bengalensis. By systematically investigating the impact of two common carboxylic acids, acetic acid (AA) and benzoic acid (BA), this research employed diverse toxicological, pathological, and ecological assessments. We explored survival predictions through the generic unified threshold model of survival (GUTS-SD), examined oxidative stress responses, and investigated hepatopancreatic alterations. In the experimental design, Bellamya bengalensis were subjected to environmentally relevant sublethal concentrations (10%, 20% LC50) of AA (39.77 and 79.54 mg/l) and BA (31.41 and 62.82 mg/l) over 28 days. Acute toxicity tests revealed increased LC50 values, indicating heightened toxicity with prolonged exposure, particularly due to the greater potency of benzoic acid compared to acetic acid. The GUTS-SD model provided accurate predictions of time-specific effects on populations, presenting long-term exposure (100 days) LC50 values for AA (263.7 mg/l) and BA (330.9 mg/l). Sequentially, the integrated biomarker response (IBR) analysis across study intervals highlighted the 28-day interval as the most sensitive, with GST emerging as the most responsive enzyme to oxidative stress induced by AA and BA. Histopathological and ultrastructural assessments of the hepatopancreas showed severe alterations, including necrosis, vacuolation and disrupted micro-villi, which were especially pronounced in higher BA exposure concentrations. These findings highlight the health and survival impacts of carboxylic acid toxicity on Bellamya bengalensis, emphasizing the need for proactive measures to mitigate acidification in aquatic ecosystems. The broader ecological implications underscore the importance of effective management and conservation strategies to address ongoing environmental challenges.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/ultraestrutura , Hepatopâncreas/patologia , Ácidos Carboxílicos/toxicidade , Gastrópodes/efeitos dos fármacos , Ácido Acético/toxicidade , Ácido Benzoico/toxicidade , Testes de Toxicidade Aguda , Água Doce/química
3.
Environ Monit Assess ; 196(6): 573, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780819

RESUMO

This study aimed to predict the dynamics of per- and polyfluoroalkyl substance (PFAS) contamination and ecological vulnerability within coastal regions of Africa utilizing time-averaged remote-sensed data patterns from 2020 to 2023. The analysis identified PFAS contamination hotspots along the coast of Africa, particularly in western Africa around Nigeria and in areas spanning Equatorial Guinea and Guinea-Bissau, with risk influenced by eastward wind patterns, overland runoff, and elevated aerosol optical depth (AOD) values. Regional trends indicated that variations in solar energy absorption and surface air temperature could influence PFAS dynamics in North Africa, South Africa, East Africa, and West Africa. In North Africa, intermediate overland runoff and lower sea-surface temperatures were observed. In South Africa, there were intermediate runoff levels and warmer sea-surface temperatures. East Africa experienced intermediate runoff as well. In West Africa, there was increased susceptibility to high overland runoff and aerosol-related PFAS contamination. From the weighted vulnerability index, significant disparities in environmental conditions across African coastal regions revealed that North Africa had relatively lower vulnerability, while West Africa had the highest susceptibility to per- and polyfluoroalkyl substance (PFAS) contamination. This study emphasizes the necessity for region-specific vulnerability index models and targeted mitigation strategies to address diverse ecological and health risks from PFAS contamination along the African coast. Regional and international collaboration, spearheaded by organizations such as the AU and ECOWAS, is essential, with tailored policies aligned with the SDGs, Agenda 2063, and NEPAD crucial for effective environmental management, urging policymakers to prioritize cooperation and resource sharing for comprehensive sustainability goals.


Assuntos
Monitoramento Ambiental , África , Poluentes Químicos da Água/análise , Tecnologia de Sensoriamento Remoto , Fluorocarbonos/análise
4.
Sci Total Environ ; 933: 173245, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38754512

RESUMO

The present study has investigated per- and poly-fluoroalkyl substances (PFAS) in the gill tissues of various fish species inhabiting different trophic levels within Eleyele Lake, a tropical freshwater lake in Nigeria. The mean concentrations of PFAS congeners were determined, and their trends and patterns were analyzed across different trophic species. The results revealed variations in congener abundance and species-specific patterns that was influenced by habitat and niche preferences. Multivariate associations using canonical-correlation analysis (CCA) revealed distinct trends in the relationships between gill concentrations of specific PFAS congeners and different trophic groups. The strongest congener relationships were observed in the pelagic omnivore (Oreochromic niloticus: ON) with positive associations for 4:2 FTS, 9CL-PF3ONS, PFTDA, MeFOSA and PFHxS. The differences in congener profiles for the two herbivorous fish (Sarotherodon melanotheron (SM) and Coptodon galilaeus (CG)) reflect possible divergence in microhabitat and niche preferences. Furthermore, the congener overlaps between the herbivore (CG), and benthic omnivore (Clarias gariepinus: ClG) indicate a possible niche and microhabitat overlap. Our study provides valuable insights into the congener dynamics of PFAS at Eleyele Lake. However, the dissimilarity and overlapping PFAS congener profile in fish gills reflects the interplay of species niche preference and microhabitat associations. The present study highlights the need for further research to assess ecological risks and develop effective PFAS management strategies.


Assuntos
Ecossistema , Monitoramento Ambiental , Peixes , Brânquias , Lagos , Poluentes Químicos da Água , Animais , Lagos/química , Poluentes Químicos da Água/análise , Peixes/metabolismo , Nigéria , Fluorocarbonos/análise
5.
Chemosphere ; 359: 142231, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719117

RESUMO

In this study, we investigated the growth dynamics and otolith shape asymmetry of two fish species, Chrysichthys nigrodigitatus (CN) and Oreochromis niloticus (ON), within urbanized watersheds of the southern lagoon system, Nigeria. Using the von Bertalanffy growth model (VBGM), in addition to sediment metal concentration indices such as the average shale content, index of geoaccumulation (Igeo), contamination factor (CF), pollution load index (PLI), and potential ecological risk (PER) index, contamination levels were classified, and ecological risks were assessed. Notably, a lower growth potential (t0) was observed in CN at Ikorodu than at Epe, with similar trends for ON in the Epe during the dry season. Otolith asymmetry patterns, particularly in the CN at Ikorodu and ON in the Epe during the dry season, exhibited distinct ecological variations, indicating heightened stress levels at Ikorodu. Sediment analyses revealed moderate to strong contamination (Cd, Pb, Ni, and Cr) in both Lagos Lagoon (Ikorodu) and Epe Lagoon, with Ikorodu exhibiting notably high to moderate contamination levels according to the CF index. Elevated PLI values for Cd and Pb in Ikorodu, in addition to greater PER, indicated increased risk, with Cd posing a high risk (61.42%) and Pb posing a moderate risk (49.50%). Additionally, the reduced asymptotic length in the Epe during the dry season suggests that Chrysichthys nigrodigitatus is adaptable to seasonal variations, while divergent growth patterns in both areas indicate the existence of trade-off mechanisms in response to changing conditions. Habitat-specific otolith asymmetry and metal contamination underscore species adaptability, with wider stressor variability in Lagos than in Epe. Furthermore, multidimensional scaling analysis highlights the intricate relationship between otolith shape variables and environmental factors, emphasizing the need for tailored conservation efforts in urbanized watersheds.


Assuntos
Ciclídeos , Monitoramento Ambiental , Membrana dos Otólitos , Urbanização , Poluentes Químicos da Água , Animais , Ciclídeos/crescimento & desenvolvimento , Nigéria , Membrana dos Otólitos/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Estações do Ano
6.
Environ Pollut ; 346: 123575, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365077

RESUMO

We have investigated the occurrence, distribution, and biomagnification of per- and polyfluoroalkyl substances (PFAS) in two tropical lakes (Asejire and Eleyele) of Southwestern Nigeria, with contrasting urban intensities. Over an 8-month period, we sampled sediment and fish species (Clarias gariepinus: CIG; Oreochromis niloticus: ON; Coptodon guineensis: CG; Sarotherodon melanotheron: SM) across trophic levels, and analyzed various PFAS congeners, in addition to a select group of toxicological responses. While herbivores (SM) and benthic omnivores (CIG) at Asejire exhibited elevated levels of PFBS and PFOS, the pelagic omnivores (ON) showed a dominance of PFOS, PFDA, PFHxDA and EtFOSE in the muscle. At the Eleyele urban lake, PFAS patterns was dominated by PFBS, EtFOSE, PFPeS, PFOcDA and PFOS in the herbivores (SM, CG), EtFOSE, PFOS and PFBS in the pelagic omnivore (ON) and benthic omnivore (ClG). The estimated biomagnification factor (BMF) analysis for both lakes indicated trophic level increase of PFOS, PFUnA and PFDA at the suburban lake, while PFOS and EtFOSE biomagnified at the urban lake. We detected the occurrence of diSAMPAP and 9CL-PF3ONS, novel compounds not commonly reported, in PFAS studies at both lakes. The studied toxicological responses varied across trophic groups in both lakes with probable modulations by environmental conditions, trophic structure, and relative PFAS exposures in the lakes. The present study documents, for the first time in Nigeria, or any other African country, the role of urbanization on contaminant load into the environment and their implications for contaminant dynamics within the ecosystem and for aquatic food safety.


Assuntos
Ácidos Alcanossulfônicos , Ciclídeos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Lagos/química , Ecossistema , Bioacumulação , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Nigéria , Monitoramento Ambiental , Ácidos Alcanossulfônicos/análise
7.
Front Toxicol ; 6: 1336916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380148

RESUMO

Introduction: Estrogenic chemicals in aquatic environments impact fish reproductive health, with vitellogenin protein levels serving as a crucial biomarker for xenoestrogen exposure. Limited knowledge exists on estrogenic effects in tropical environments, prompting an investigation into the influence of environmental estrogens on Chrysichthys nigrodigitatus in Lagos and Epe lagoons. Methods: A total of 195 fish samples underwent analysis for vitellogenin protein, sex hormones (testosterone and 17 ß-estradiol), and gonad pathology in effluent-receiving areas of the specified lagoons. Results: Gonadal alterations were observed in male and female fish, including empty seminiferous tubules and distorted ovaries. Intersex occurred in 3.81% of Lagos and 3.33% of Epe. Testosterone levels were generally higher in females and males from both lagoons, while E2 levels were higher in females from both lagoons, with Lagos showing higher levels than Epe. Vtg levels were higher in males than females in Lagos samples but showed no significant difference in Epe samples. Discussion: Contaminant analysis revealed similar trends in metals (Hg, As, Cr) and phthalates (DEHP, DBP, DEP) in both sexes in the Epe population. Multivariate depictions from the PCA showed sex-specific patterns of metal uptake (Cd) in male fishes at the Lagos Lagoon. The positive association between higher pH loadings and metal and DBP levels in sediment at the Lagos lagoon suggests the influence of higher alkalinity in lower bioavailability of contaminants. Conclusion: Endocrine disrupting effects were observed in male and female Chrysichthys nigrodigitatus in Lagos and Epe lagoons populations, with notable differences in hormone and contaminant concentrations between the two lagoon systems. Identification of specific contaminants and their spatial and temporal trends can inform targeted management and remediation efforts to protect and restore these valuable aquatic ecosystems.

8.
Chemosphere ; 352: 141412, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336035

RESUMO

This study examined the multifaceted impacts of fluorene exposure on Tubifex tubifex, encompassing acute (survival analysis and behavioral responses) and subchronic exposure regimens (antioxidant enzyme response and histopathology), molecular docking studies, and generalized read-across analysis. Survival analysis revealed concentration-dependent increases in toxicity over varying time intervals, with LC50 values decreasing from 30.072 mg/L at 24 h to 12.365 mg/L at 96 h, emphasizing the time-sensitive and concentration-responsive nature of the stressor. Behavioral responses were both concentration- and duration-dependent. While Erratic Movement and Clumping Tendency exhibited earlier responses (within 24 h) at lower concentrations, the wrinkling effect and mucus secretion) exhibited delayed onset, suggesting intricate regulatory mechanisms underlying adaptability to environmental challenges; moreover, the wrinkling effect was consistently induced at higher concentrations, indicating greater sensitivity to the toxic effects of fluorene. With sublethal environmentally relevant concentrations-1.24 mg/l and 2.47 mg/L i.e., 10% and 20% 96 h, respectively-the antioxidant enzyme response (i.e., upregulation of SOD, CAT, and GST) with increasing fluorene concentration, revealing a nonlinear, hormetic response, suggested adaptive protection at lower doses but inhibition at higher concentrations. Histopathological examination indicated that higher fluorene concentrations caused cellular proliferation, inflammation, and severe tissue damage in the digestive tract and body wall. Molecular docking studies demonstrated robust interactions between fluorene and major stress biomarker enzymes, disrupting their functions and inducing oxidative stress. Interactions with cytochrome c oxidase suggested interference with cellular energy production. Generalized Read-Across (GenRA) analysis unveiled shared toxicity mechanisms among fluorene and its analogs, involving the formation of reactive epoxides and the influence of cytochrome P450 enzymes. The diverse functional groups of these analogs, particularly chlorine-containing compounds, were implicated in toxicity through lipid peroxidation and membrane damage. Adverse outcome pathways and broader consequences for aquatic ecosystem health are discussed.


Assuntos
Oligoquetos , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Ecossistema , Simulação de Acoplamento Molecular , Biomarcadores/metabolismo , Fluorenos/toxicidade , Fluorenos/metabolismo , Poluentes Químicos da Água/metabolismo
9.
Environ Monit Assess ; 196(1): 79, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38141112

RESUMO

This study focuses on assessing coastal vulnerability and habitat sensitivity along the West African coast by delineating hotspots based on surface temperature, pH, chlorophyll-a, particulate organic carbon, and carbonate concentrations between 2018 and 2023 depending on data availability. Initial exploration of these variables revealed two distinct focal points i.e., the Togo-Nigerian coastal stretch and the stretch from Sierra Leone to Mauritania. Lower pH trends (acidification) in surface waters were observed off the West African coast, particularly in areas around the south-south Niger Delta in Nigeria and the coastal regions of Guinea and Guinea Bissau. Sea surface temperature analysis revealed highest temperatures (27-30°C) within Nigeria to Guinea coastal stretch, intermediate temperatures (24-27°C) within the Guinea Bissau and Senegal coastal stretch, and the lowest temperatures off the coast of Mauritania. Furthermore, correlation analysis between sea surface temperature and calcite concentration in the Mauritania-Senegal hotspot, as well as between overland runoff and particulate organic carbon in the Togo-Nigeria hotspot, revealed strong positive associations (r>0.60) and considerable predictive variability (R2 ≈ 0.40). From the habitat sensitivity analysis, certain regions, including Cape Verde, Côte d'Ivoire, Nigeria, Senegal, and Sierra Leone, exhibited high sensitivity due to environmental challenges and strong human dependence on coastal resources. Conversely, Gambia, Guinea, Guinea-Bissau, Liberia, and Togo displayed lower sensitivity, influenced by geographical-related factors (e.g. coastal layout, topography, etc.) and current levels of economic development (relatively lower industrialization levels). Regional pH variations in West African coastal waters have profound implications for ecosystems, fisheries, and communities. Addressing these challenges requires collaborative regional policies to safeguard shared marine resources. These findings underscore the link between ecosystem health, socioeconomics, and the need for integrated coastal management and ongoing research to support effective conservation.


Assuntos
Mudança Climática , Ecossistema , Humanos , Acidificação dos Oceanos , Concentração de Íons de Hidrogênio , Monitoramento Ambiental , Água do Mar , Carbono
10.
Environ Sci Pollut Res Int ; 30(50): 108565-108581, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37752391

RESUMO

While oxidative stress pathways are associated with a wide variety of tissue pathologies, its applications for evaluating and discerning ecological risks are limited. This study seeks to associate trends of lipid peroxidation and oxidative stress to risks of muscle pathologies in blue crabs inhabiting regions of the Lagos Lagoon. Crab samples (n = 520) were selected from pollution-impacted sites of the lagoon at Iddo, Ajah, Okobaba, Makoko, and the mid-lagoon area (control site). Antioxidant enzyme capacity, i.e., superoxide dismutase, catalase, glutathione peroxidase (GPx), and glutathione-S-transferase, and lipid peroxidation were evaluated in the muscle tissue of the blue crabs. The study findings showed distinct patterns of metal uptake in muscle, with redox-active metals (Cu and Zn) and redox-inactive metals (Pb and Cd) exhibiting site-specific differences. Additionally, there were changes in antioxidant modulation, lipid peroxidation, and the presence of associated myopathies. Blue crabs from sites (Makoko and Ajah) with greater uptake of redox-active metals (Cu and Zn) in muscle tissue showed higher trends of lipid peroxidation and the most prevalence of severe regression-type myopathies. Sites with lower uptake of redox-active metals showed the predominance of circulatory-type myopathies. This study also provides evidence of severe necrosis and myositis associated with digenean parasite cysts in crab muscle. Pathological evidence of severe skeletal muscle deterioration in the presence of greater lipid peroxidation could have implications for motor-neuron activity and reduced force-generating capacity necessary for adaptive responses in the wild. We conclude that elevated uptake of redox metals could aggravate the onset of myopathies in wild populations.


Assuntos
Braquiúros , Metais Pesados , Doenças Musculares , Animais , Braquiúros/metabolismo , Antioxidantes/metabolismo , Metais Pesados/análise , Nigéria , Estresse Oxidativo , Oxirredução , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos
11.
Bull Environ Contam Toxicol ; 110(5): 94, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171504

RESUMO

The physiological effects of triazophos were examined using respiratory and behavioral endpoints in Bellamya bengalensis under a 96-hour acute exposure regime. Physiological manifestation of respiratory stress was measured using the rate of oxygen consumption while behavioral toxicity was measured using crawling reflexes, touch response, and mucus production. The threshold effect values for LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration), and MATC (Maximum Acceptable Toxicant Concentration) at 96 h were 0.40, 0.60, and 0.075 mg/l, respectively. Definitive 96 h acute exposures for both respiratory and behavioral endpoints tests were determined using a control group and concentrations ranging from 0.40 to 1.60 mg/l monitored for 24, 48, 72, and 96 h. Test organisms irrespective of exposure concentration demonstrated an initial rise in oxygen consumption rate after 24 h, followed by a progressive decrease in toxicant concentration and exposure period. The in silico structural analysis presents triazophos as having an electrophilic toxic structure similar to choline esterase inhibitors, and also capable of inducing oxidative stress. The AOP highlighted neurotoxicity and oxidative stress as plausible pathways of triazophos toxicity in mollusk species.


Assuntos
Rotas de Resultados Adversos , Poluentes Químicos da Água , Animais , Caramujos , Organotiofosfatos/toxicidade , Água Doce , Poluentes Químicos da Água/toxicidade
12.
Environ Monit Assess ; 195(5): 584, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37072567

RESUMO

There are growing concerns on contribution of vegetation dynamics to atmospheric turbidity and quality of regional water towers. The study sought to determine the trends in the MODIS/TERRA-derived normalized difference vegetation index (NDVI) and aerosol optical depth (AOD) for Lesotho Highland over 2000-2020. The predictive relationship between the two variables was also examined using regression analysis. Irrespective of yearly AOD patterns, the AOD showed biphasic patterns peaking between mid-winter to early spring (July-October) (highest) and autumn (Feb-April) (next highest), and lowest in the summer (Nov-January). The monthly NDVI was largest in January-March (summer-early fall) with smaller values in winter and spring. This seasonality can be related to the peak of anthropogenic biomass combustion during the winter and strong winds during the spring and early summer. The AOD relationship with NDVI showed quadratic patterns peaking and plunging with changes in season. About 30-80% (R2 = 0.3-0.8%) changes in annual AOD from 2000 to 2020 were explainable by the dynamics of NDVI indicating that increased NDVI contributes to about a 50% decrease in AOD in the Lesotho Highlands. However, an outlier trend was observed in 2007 (R2 = 13%). Incidences of high AOD in months of high NDVI may be indicative of traveling aerosols, i.e., aerosols from non-local sources/activity. On the other hand, high AOD in months of low NDVI implicates local aerosol sources. Trend relationship studies on vegetation loss and AOD in mountain areas of other regions could improve knowledge of contaminant dynamics and risk implications for downstream populations.


Assuntos
Monitoramento Ambiental , Qualidade da Água , África do Sul , Lesoto , Estações do Ano , Aerossóis/análise
13.
Sci Total Environ ; 876: 162739, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36906024

RESUMO

This study evaluated Acetic acid (AA) and Benzoic acid's (BA) acute and sublethal toxicity by observing mortality, behavioral responses, and changes in the levels of oxidative stress enzymes in Tubifex tubifex. Exposure-induced changes in antioxidant activity (Catalase, Superoxide dismutase), oxidative stress (Malondialdehyde concentrations), and histopathological alterations in the tubificid worms were also noted across exposure intervals. The 96 h LC50 values of AA and BA to T. tubifex were 74.99 and 37.15 mg/l, respectively. Severity in behavioral alterations (including increased mucus production, wrinkling, and reduction in clumping) and autotomy showed concentration-dependent trends for both toxicants. Although histopathological effects also showed marked degeneration in the alimentary and integumentary systems in highest exposure groups (worms exposed to 14.99 mg/l for AA and 7.42 mg/l for BA) for both toxicants. Antioxidant enzymes (catalase and superoxide dismutase) also showed a marked increase of up to 8-fold and 10-fold for the highest exposure group of AA and BA respectively. While species sensitivity distribution analysis revealed T. tubifex as most sensitive to AA and BA compared to other freshwater vertebrates and invertebrates, General Unified Threshold model of Survival (GUTS) predicted individual tolerance effects (GUTS-IT), with slower potential for toxicodynamic recovery, as a more likely pathway for population mortality. Study findings demonstrate BA with greater potential for ecological effects compared to AA within 24 h of exposure. Furthermore, ecological risks to critical detritus feeders like T. tubifex may have severe implications for ecosystem services and nutrient availability within freshwater habitats.


Assuntos
Oligoquetos , Poluentes Químicos da Água , Animais , Catalase/metabolismo , Ecossistema , Ácido Acético/toxicidade , Ácido Acético/metabolismo , Oligoquetos/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Benzoatos/metabolismo , Poluentes Químicos da Água/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-36396087

RESUMO

The acute toxicity of mercury to the air-breathing fish Clarias batrachus (Linn.) was determined in this study using hematological (including hemoglobin, hematocrit, total erythrocyte count, total leukocyte count, and mean corpuscular hemoglobin concentration) and biochemical (including total serum protein, serum glucose, triglyceride, cholesterol, albumin) biomarkers at predetermined exposure concentrations (0.069 and 0.139 mg/L). Although significant differences were observed between exposure groups for all hematological and biochemical variables, a distinctive reduction in hemoglobin levels, hematocrit, and total erythrocyte count in the mercury-exposed fish compared to the control was observed from 24 h-96 h. Similarly, marked differences in serum globulin, total serum protein and cholesterol levels were observed across exposure groups from 24 h-96 h. While the marked hematological responses strongly suggestive of toxicant-related anemia, the marked biochemical responses suggest immune-modulation and metabolic disruption. The magnitude of toxic effects under graded toxicant exposures for weighted scores of combined biomarker response index (IBR) indicated an approximately 3-fold deterioration in overall health of mercury-exposed fish compared to control group. Depictions of hematological and biochemical effects in hardy species like Clarias batrachus indicate an imminent onset of anemia, immune-modulation and metabolic disruption within 24hs of exposure to inorganic mercury. Such observations for portends greater deleterious effects to less hardy aquatic biota under acute inorganic mercury environmental exposures.


Assuntos
Peixes-Gato , Mercúrio , Animais , Mercúrio/toxicidade , Mercúrio/metabolismo , Hematócrito , Hemoglobinas/metabolismo , Peixes-Gato/metabolismo , Colesterol/metabolismo
15.
Biol Trace Elem Res ; 201(7): 3497-3512, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36251148

RESUMO

To examine the spectrum of selenium toxicity between hardy and less hardy species of the same life stages, short-term and longer-term exposures in juvenile air-breathing fish Channa punctata (Bloch, 1973) and non-air-breathing fish Ctenopharyngodon idella (Cuvier, 1844) were assessed. Acute exposures revealed a greater 96-h median lethal concentration (LC50) for C. punctata (14.67 mg/l) compared to C. idella (7.98 mg/l). During their chronic exposure, both fishes' hemoglobin content (Hb), red blood cells (RBC), and hematocrit (HCT) markedly decreased (p < 0.05), although their clotting time (CT) significantly increased. At 96 h, immune-modulation was observed where total protein and serum globulin levels in both fishes considerably decreased (p < 0.05) compared to the first exposure at 0 days, although total glucose, triglyceride, cholesterol, and albumin levels in both fishes significantly increased (p < 0.05) at 30 days. The lower cholesterol levels in C. punctata compared to C. idella are suggestive of a disrupted cholesterol transformation pathway. The greater total protein, triglyceride, albumin, and globulin levels in C. punctata compared to C. idella are suggestive of a comparatively robust immune capacity. In essence, selenium toxicity in the wild could manifest as disrupted metabolic pathways and downregulated immune capacity for less hardy species. In general, both fish species displayed significant alterations in their hematological and biochemical responses with increased exposure duration and elevated toxicant concentrations. This comparative investigation could improve the knowledge-spectrum of selenium toxicity in the wild as well as an understanding of secondary stress responses critically evident in hematological and biochemical parameters.


Assuntos
Selênio , Animais , Ácido Selênico , Selênio/toxicidade , Peixes/metabolismo , Hemoglobinas/metabolismo , Biomarcadores
16.
Sci Total Environ ; 858(Pt 2): 159835, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334666

RESUMO

This state-of-the-science review is aimed at identifying the sources, occurrence, and concentrations of EDCs, including potential public health risks associated with drinking water and aquatic food resources from Nigerian inland waters. A total of 6024 articles from scientific databases (PubMed, Scopus, Web of science, ScienceDirect, Google Scholar, and African Journals Online) were identified, out of which, 103 eligible articles were selected for this study. Eleven (11) classes of EDCs (OCPs, PCBs, PBDEs, PAHs, BPA, OTs, PEs, PCs, PPCPs, sterols and n-alkanes) were identified from drinking waters, river sediments and aquatic food species from Nigerian rivers, showing that OCPs were the most studied and reported EDCs. Analytical methods used were HPLC, LC-MS/MS, GC-FID, GC-ECD and GC-MS with all EDCs identified to originate from anthropogenic sources. Carcinogenic, mutagenic, and teratogenic effects were the highest (54.4 %) toxicological effects identified, while reproductive/endocrine disruptive effects (15.2 %) and obesogenic effects (4.3 %) were the least identified toxicological effects. The targeted hazard quotient (THQ) and cancer risk (CR) were generally highest in children, compared to the adult populations, indicating age-specific toxicity. PEs produced the highest THQ (330.3) and CR (1.2) for all the EDCs in drinking water for the children population, suggesting enhanced vulnerability of this population group, compared to the adult population. Due to associated public health, wildlife and environmental risk of EDCs and their increasing concentrations in drinking water and food fish species from Nigerian inland waters, there is an urgent need for focused and strategic interventions, sensitization and policy formulation/implementation towards public health and aquatic food safety in Nigeria.


Assuntos
Água Potável , Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Disruptores Endócrinos/análise , Nigéria , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Saúde Pública , Cromatografia Líquida , Espectrometria de Massas em Tandem , Rios
17.
Toxics ; 10(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422909

RESUMO

Disrupted behavior and respiratory distress effects of 96-h acute deltamethrin exposures in adult Mozambique tilapia, Oreochromis mossambicus, were investigated using behavioral indices and opercular movement, respectively. Deltamethrin concentrations were found to be associated with toxicological (lethal and sublethal) responses. At 24, 48, 72, and 96 h, the LC50 values and 95% confidence limits were 12.290 (11.174-14.411 µg/L), 12.671 (11.334-15.649 µg/L), 10.172 (9.310-11.193 µg/L), and 8.639 (7.860-9.417 µg/L), respectively. The GUTS-model analysis showed that GUTS-SD (stochastic death) with a narrow tolerance distribution in deltamethrin exposed O. mossambicus populations was more sensitive than the GUTS-IT (individual tolerance) model. Prior to death, exposed fish demonstrated concentration-dependent mortality and disturbed behavioral responses, including uncoordinated swim motions, increased mucus secretion, unbalanced and unpredictable swimming patterns, and inactivity. The altered behavioral patterns and increased opercular movement with increased deltamethrin levels and exposure time are strongly suggestive of neurotoxicity and respiratory distress, respectively. Adverse Outcome Pathways (AOPs), describing biological mechanisms and plausible pathways, highlighted oxidative stress and cholinergic effects as intermediate steps linked to respiratory distress and behavioral toxicity.

18.
Artigo em Inglês | MEDLINE | ID: mdl-36058464

RESUMO

The toxic effects of Zinc oxide nanoparticles (nZnO) on Branchiura sowerbyi and Heteropneustes fossilis, was assessed in a 96-hour acute exposure regime using behavioral (including loss-of balance and clumping tendencies) and physiological (mucus secretion and oxygen consumption) endpoints. While the relationship between behavioral, physiological biomarkers, and exposure concentrations was assessed using correlation analysis, nZnO toxicity was further predicted using the General Unified Threshold model for Survival (GUTS). The time-dependent lethal limits for acute nZnO toxicity (LC50) on B. sowerbyi were estimated to be 0.668, 0.588, 0.448, and 0.400 mg/l, respectively, at 24, 48, 72, and 96 h whereas for H. fossilis the LC50 values are 0.954, 0.905, 0.874 and 0.838 mg/l. Threshold effect values i.e., LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration), and MATC (Maximum Acceptable Toxicant Concentration) threshold effect values at 96 h were higher for fish compared to the oligochaete. For B. sowerbyi, the GUTS-SD (stochastic death) model is a better predictor of nanoparticle exposure effects compared to the GUTS-IT (individual tolerance) model, however in the case of H. fossilis, the reverse pattern was observed. Oxygen consumption rate was negatively correlated to mortality under acute exposure duration. The strong negative correlation between mortality and oxygen consumption strongly suggests a metabolic-toxicity pathway for nZnO exposure effects. The higher toxicity threshold values i.e., LOEC, NOEC, and MATC for fish compared to the oligochaete invertebrate indicates greater risks for invertebrates compared to vertebrates, with resultant implications for local habitat trophic relationships.


Assuntos
Peixes-Gato , Nanopartículas , Oligoquetos , Poluentes Químicos da Água , Óxido de Zinco , Animais , Água Doce , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade
19.
Sci Total Environ ; 836: 155716, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35526629

RESUMO

The hydrophilic nature and resultant persistence of neonicotinoids in aquatic systems increase the exposure duration for non-target organisms. The sublethal toxicity of the neonicotinoid Thiamethoxam® spanning sub-chronic and chronic durations was investigated in Clarias batrachus, a non-target freshwater fish species. 96 h LC50 value of Thiamethoxam® on Clarias batrachus was 138.60 mg L-1. Pre-determined exposure concentrations of Thiamethoxam® (6.93 and 13.86 mg L-1) were used and effects were assessed at days 15, 30, and 45 exposure intervals. Biomarker effects were evaluated using antioxidant enzyme responses (CAT, SOD) neurotransmission (acetylcholinesterase activity), haematological and serum biochemistry changes (including haemoglobin content, total erythrocyte count, and serum albumin total leukocyte count, total serum protein, serum globulin, triglyceride, cholesterol, high-density lipoprotein, very low-density lipoprotein, low-density lipoprotein, phospholipid, and total serum glucose), histopathological alterations (gill and liver). Thiamethoxam®-exposed fish showed a marked reduction in haemoglobin content, total erythrocyte count, and serum albumin levels compared to control fish. Similarly, gill and liver antioxidant enzyme activity (CAT, SOD) and neurotransmission (acetylcholinesterase) also showed altered responses between sub-chronic exposure on day-15 and chronic responses on day-45. Histopathological observations in gill tissue revealed alterations ranging from vacuolation, hypertrophy, disruption of primary lamellar architecture, haemorrhage, the fusion of secondary lamella, and sloughing of outer epithelia. For liver tissue of exposed fish histopathological observations included increased sinusoidal spaces (ISS), necrosis of hepatocytes (NOH), nuclear degeneration (ND), disruption of architecture (DOA), macrophage infiltration of the central vein, vacuolation (V), hypertrophied hepatocytes, and haemorrhages. The gradients of toxic responses across exposure concentrations and depictions of impaired fish health with increasing thiamethoxam® exposure duration portend lowered physiological capacity for survival in the wild.


Assuntos
Peixes-Gato , Poluentes Químicos da Água , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Peixes-Gato/metabolismo , Água Doce , Hemoglobinas/metabolismo , Neonicotinoides/metabolismo , Neonicotinoides/toxicidade , Albumina Sérica/metabolismo , Superóxido Dismutase/metabolismo , Tiametoxam , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
20.
Environ Toxicol Pharmacol ; 90: 103815, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35065295

RESUMO

The sub-lethal toxicity of Captan® on selected haematological (Hemoglobin, Haematocrit, Mean Corpuscular Hemoglobin) growth (Condition factor, Hepatosomatic Index, Specific Growth Rate), biochemical (serum glucose, protein), and endocrine parameters (growth hormone, T3 and T4) in Clarias batrachus was examined under chronic exposures. Captan® was administered at predetermined exposure concentrations (0.53 and 1.06 mg/L) and monitored on days 15, 30, and 45 of the experimental periods. The experimental groups showed significantly lower values (p < 0.05) of haemoglobin content, hematocrit, MCH in Captan® exposed fish compared to control. Serum protein, k-factor and SGR were significantly lower in exposed fish. Endocrine responses (T3 and T4) emerged as the most sensitive biomarker category, depicting modulated responses between sub-chronic exposure at day-15 and chronic responses at day-45. In general, biomarker depictions indicate that Captan® exposures are capable of inducing stress-specific effects at the biochemical and physiological levels negatively impacting the overall health and longevity of such animals.


Assuntos
Biomarcadores/sangue , Captana/toxicidade , Peixes-Gato/sangue , Animais , Peixes-Gato/crescimento & desenvolvimento , Fungicidas Industriais/toxicidade , Hematócrito , Hemoglobinas/análise , Tiroxina/sangue , Tri-Iodotironina/sangue , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...