Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7413, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523844

RESUMO

The double carbonate BaCa(CO3)2 holds potential as host compound for carbon in the Earth's crust and mantle. Here, we report the crystal structure determination of a high-pressure BaCa(CO3)2 phase characterized by single-crystal X-ray diffraction. This phase, named post-barytocalcite, was obtained at 5.7 GPa and can be described by a monoclinic Pm space group. The barytocalcite to post-baritocalcite phase transition involves a significant discontinuous 1.4% decrease of the unit-cell volume, and the increase of the coordination number of 1/4 and 1/2 of the Ba and Ca atoms, respectively. High-pressure powder X-ray diffraction measurements at room- and high-temperatures using synchrotron radiation and DFT calculations yield the thermal expansion of barytocalcite and, together with single-crystal data, the compressibility and anisotropy of both the low- and high-pressure phases. The calculated enthalpy differences between different BaCa(CO3)2 polymorphs confirm that barytocalcite is the thermodynamically stable phase at ambient conditions and that it undergoes the phase transition to the experimentally observed post-barytocalcite phase. The double carbonate is significantly less stable than a mixture of the CaCO3 and BaCO3 end-members above 10 GPa. The experimental observation of the high-pressure phase up to 15 GPa and 300 ºC suggests that the decomposition into its single carbonate components is kinetically hindered.

2.
Chem Sci ; 10(26): 6467-6475, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31341598

RESUMO

We report the experimental high-pressure crystal structure and equation of state of gold(i) sulfide (Au2S) determined using diamond-anvil cell synchrotron X-ray diffraction. Our data shows that Au2S has a simple cubic structure with six atoms in the unit cell (four Au in linear, and two S in tetrahedral, coordination), no internal degrees of freedom, and relatively low bulk modulus. Despite its structural simplicity, Au2S displays very unusual chemical bonding. The very similar and relatively high electronegativities of Au and S rule out any significant metallic or ionic character. Using a simple valence bond (Lewis) model, we argue that the Au2S crystal possesses two different types of covalent bonds: dative and shared. These bonds are distributed in such a way that each Au atom engages in one bond of each kind. The multiple arrangements in space of dative and shared bonds are degenerate, and the multiplicity of configurations imparts the system with multireference character, which is highly unusual for an extended solid. The other striking feature of this system is that common computational (DFT) methods fail quite spectacularly to describe it, with 20% and 400% errors in the equilibrium volume and bulk modulus, respectively. We explain this by the poor treatment of static correlation in common density-functional approximations. The fact that the solid is structurally very simple, yet presents unique chemical bonding and is unmodelable using current DFT methods, makes it an interesting case study and a computational challenge.

3.
J Colloid Interface Sci ; 511: 12-20, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28963984

RESUMO

In this work, the viscoelasticity of fragile ß-casein films has been followed using different macro- and microrheological techniques. The modulus of the complex surface viscosity |η∗| varies with time, allowing for the monitoring of the protein adsorption and annealing. ß-casein adsorption creates a soft glassy gel at the interface that experiences an aging process. Macrorheological experiments with multiple probe sizes in addition to microrheological experiments demonstrated the consistency of the surface rheological properties over a broad range of viscosities. Surface pressure measurements were performed to complement the characterization of the processes.


Assuntos
Caseínas/química , Membranas Artificiais , Resistência ao Cisalhamento , Reologia
5.
Sci Rep ; 6: 27214, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27257122

RESUMO

New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 µeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown &Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...