Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0256976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888624

RESUMO

The forests of central Europe have undergone remarkable transitions in the past 40 years as air quality has improved dramatically. Retrospective analysis of Norway spruce (Picea abies) tree rings in the Czech Republic shows that air pollution (e.g. SO2 concentrations, high acidic deposition to the forest canopy) plays a dominant role in driving forest health. Extensive soil acidification occurred in the highly polluted "Black Triangle" in Central Europe, and upper mineral soils are still acidified. In contrast, acidic atmospheric deposition declined by 80% and atmospheric SO2 concentration by 90% between the late 1980s and 2010s. In this study we oserved that annual tree ring width (TRW) declined in the 1970s and subsequently recovered in the 1990s, tracking SO2 concentrations closely. Furthermore, recovery of TRW was similar in unlimed and limed stands. Despite large increases in soil base saturation, as well as soil pH, as a result of repeated liming starting in 1981, TRW growth was similar in limed and unlimed plots. TRW recovery was interrupted in 1996 when highly acidic rime (originating from more pronounced decline of alkaline dust than SO2 from local power plants) injured the spruce canopy, but recovered soon to the pre-episode growth. Across the long-term site history, changes in soil chemistry (pH, base saturation, Bc/Al soil solution ratio) cannot explain observed changes in TRW at the two study sites where we tracked soil chemistry. Instead, statistically significant recovery in TRW is linked to the trajectory of annual SO2 concentrations or sulfur deposition at all three stands.


Assuntos
Poluição do Ar , Picea , Solo , Estudos Retrospectivos , Florestas , Concentração de Íons de Hidrogênio
2.
Environ Sci Technol ; 55(12): 8035-8044, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34042419

RESUMO

In highly industrialized, densely populated parts of Central Europe, mobilization of legacy Zn pollution from forest ecosystems may negatively affect the quality of water resources. To test this hypothesis, we determined the 66Zn/64Zn isotope ratios of 15 Zn reservoirs and fluxes in an acidified, spruce die-back affected mountain-slope catchment in northern Czech Republic. The δ66Zn values of precipitation, organic horizon, and runoff were statistically indistinguishable. In contrast, δ66Zn values of bedrock orthogneiss and mineral soil were significantly different from δ66Zn values of runoff. The magnitude of within-site Zn isotope fractionations appeared to be relatively small. Despite the large potential source of Zn in bedrock, runoff exported mostly young pollutant Zn that had been temporarily stored in the organic horizon. This conclusion was corroborated by comparing Zn input-output mass balances in the polluted northern catchment and in a relatively unpolluted catchment situated 250 km to the south. Seven-times higher Zn export via runoff at the northern site was controlled by a combination of 10-times higher atmospheric Zn input and five-times higher DOC leaching, compared to the southern site. In industrial areas, atmospherically deposited Zn is leached from headwater catchments in a direct analogy to leaching of highly toxic pollutant Pb.


Assuntos
Poluentes Ambientais , Zinco , República Tcheca , Ecossistema , Monitoramento Ambiental , Europa (Continente) , Solo
3.
Environ Pollut ; 238: 884-893, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29631233

RESUMO

Increased reactive nitrogen (N) loadings to terrestrial ecosystems are believed to have positive effects on ecosystem carbon (C) sequestration. Global "hot spots" of N deposition are often associated with currently or formerly high deposition of sulphur (S); C fluxes in these regions might therefore not be responding solely to N loading, and could be undergoing transient change as S inputs change. In a four-year, two-forest stand (mature Norway spruce and European beech) replicated field experiment involving acidity manipulation (sulphuric acid addition), N addition (NH4NO3) and combined treatments, we tested the extent to which altered soil solution acidity or/and soil N availability affected the concentration of soil dissolved organic carbon (DOC), soil respiration (Rs), microbial community characteristics (respiration, biomass, fungi and bacteria abundances) and enzyme activity. We demonstrated a large and consistent suppression of soil water DOC concentration driven by chemical changes associated with increased hydrogen ion concentrations under acid treatments, independent of forest type. Soil respiration was suppressed by sulphuric acid addition in the spruce forest, accompanied by reduced microbial biomass, increased fungal:bacterial ratios and increased C to N enzyme ratios. We did not observe equivalent effects of sulphuric acid treatments on Rs in the beech forest, where microbial activity appeared to be more tightly linked to N acquisition. The only changes in C cycling following N addition were increased C to N enzyme ratios, with no impact on C fluxes (either Rs or DOC). We conclude that C accumulation previously attributed solely to N deposition could be partly attributable to their simultaneous acidification.


Assuntos
Chuva Ácida , Ciclo do Carbono/fisiologia , Florestas , Nitrogênio/análise , Traqueófitas/fisiologia , Bactérias , Biomassa , Carbono/análise , Ecossistema , Monitoramento Ambiental , Fagus , Fungos , Noruega , Solo , Microbiologia do Solo , Enxofre
4.
Environ Monit Assess ; 189(12): 639, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150761

RESUMO

The aim of the thesis was to specify key differences in chemistry and biota (zooplankton communities) among fluvial lakes in three regions of the Czech Republic: the central part of the Elbe River, the upper part of the Luznice River and the upper part of the Svratka River. The ten studied lakes of the three regions differ in size, geology, shading, connection with the river and the level of anthropogenic impact. The following hypotheses were tested: (1) The water chemistry of fluvial lakes significantly differs in different floodplains. In the central Elbe River floodplain, there are the highest values of conductivity and concentrations of organic matter and nutrients. Fluvial lakes of the Svratka River floodplain show the lowest level of these parameters, and fluvial lakes of the upper Luznice River have levels intermediate between the two previous regions. (2) The chemistry of fluvial lakes that have contact with the river through surface connection is significantly influenced by the river. (3) The structure of zooplankton differs in different lakes due to the geographical distance between locations, their different altitude and water chemistry. The PCA analysis of selected parameters of the water chemistry revealed a close relationship of locations in the central Elbe River floodplain on the one side and close relationship of the locations in the upper Luznice River and Svratka River on the other. However, the amount of organic matter, nitrogen (with the exception of nitrates) and phosphorus was independent of the region. The relationship between the extent of the lake-river connection and the water chemistry was not significant. The hypothesis that the zooplankton differ in different lakes was not proved-the species composition was similar in all the lakes.


Assuntos
Monitoramento Ambiental , Lagos/química , Rios/química , Poluentes da Água/análise , Poluição da Água/estatística & dados numéricos , Animais , Biota , República Tcheca , Nitrogênio , Fósforo , Zooplâncton
5.
Environ Monit Assess ; 185(7): 5683-701, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23142877

RESUMO

In this study, we investigated the relationships between stream water chemistry and watershed characteristics (topography--mean altitude and slope; climate--mean annual temperature and precipitation; geology--geochemical reactivity; land cover; inhabitation--population density, road density and number of municipalities). We analyzed the concentrations of the major anions (Cl, F, NO3, SO4, SiO2), cations (Ca, Mg, Na, K, Mn, Fe, Al), trace elements (Li, Sr, Cu), ABS245, TDP (total dissolved phosphorus), pH, and conductivity at 3,220 diverse watersheds covering a wide variety of watershed characteristics in the Czech Republic. We used marginal and partial multivariate analyses to reveal the most important variables. The partial analysis showed that only 14% of the variance could be assigned to a specific factor and that 41% of the variance is shared among the factors, which indicated complex interactions between the watershed characteristics.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Abastecimento de Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...