Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Adv Mater ; : e2404492, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935237

RESUMO

Wearable and Implantable Active Medical Devices (WIMDs) are transformative solutions for improving healthcare, offering continuous health monitoring, early disease detection, targeted treatments, personalized medicine, and connected health capabilities. Commercialized WIMDs use primary or rechargeable batteries to power their sensing, actuation, stimulation, and communication functions, and periodic battery replacements of implanted active medical devices pose major risks of surgical infections or inconvenience to users. Addressing the energy source challenge is critical for meeting the growing demand of the WIMD market that is reaching valuations in the tens of billions of dollars. This review presents a critical assessment of recent advances in energy harvesting and storage technologies that can potentially eliminate the need for battery replacements. With a key focus on advanced materials that can close the gaps between WIMDs' energy needs and the energy that can harnessed by energy harvesters, this review examines the crucial roles of advanced materials in improving the efficiencies of energy harvesters, wireless charging, and energy storage devices. This review concludes by highlighting the key challenges and opportunities in advanced materials necessary to achieve the vision of wearable and implantable active medical devices that are self-powered, eliminating the risks associated with surgical battery replacement and the inconvenience of frequent manual recharging. This article is protected by copyright. All rights reserved.

2.
Adv Sci (Weinh) ; 11(7): e2309006, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072658

RESUMO

Human skin comprises multiple hierarchical layers that perform various functions such as protection, sensing, and structural support. Developing electronic skin (E-skin) with similar properties has broad implications in health monitoring, prosthetics, and soft robotics. While previous efforts have predominantly concentrated on sensory capabilities, this study introduces a hierarchical polymer system that not only structurally resembles the epidermis-dermis bilayer structure of skin but also encompasses sensing functions. The system comprises a polymeric hydrogel, representing the "dermis", and a superimposed nanoporous polymer film, forming the "epidermis". Within the film, interconnected nanoparticles mimic the arrangement of interlocked corneocytes within the epidermis. The fabrication process employs a robust in situ interfacial precipitation polymerization of specific water-soluble monomers that become insoluble during polymerization. This process yields a hybrid layer establishing a durable interface between the film and hydrogel. Beyond the structural mimicry, this hierarchical structure offers functionalities resembling human skin, which includes (1) water loss protection of hydrogel by tailoring the hydrophobicity of the upper polymer film; (2) tactile sensing capability via self-powered triboelectric nanogenerators; (3) built-in gold nanowire-based resistive sensor toward temperature and pressure sensing. This hierarchical polymeric approach represents a potent strategy to replicate both the structure and functions of human skin in synthetic designs.


Assuntos
Biomimética , Dispositivos Eletrônicos Vestíveis , Humanos , Pele/química , Hidrogéis , Água
3.
Adv Sci (Weinh) ; 11(7): e2305829, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039442

RESUMO

This work introduces a novel method to construct Schottky junctions to boost the output performance of triboelectric nanogenerators (TENGs). Perovskite barium zirconium titanate (BZT) core/metal silver shell nanoparticles are synthesized to be embedded into electrospun polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofibers before they are used as tribo-negative layers. The output power of TENGs with composite fiber mat exhibited >600% increase compared to that with neat polymer fiber mat. The best TENG achieved 1339 V in open-circuit voltage, 40 µA in short-circuit current and 47.9 W m-2 in power density. The Schottky junctions increased charge carrier density in tribo-layers, ensuring a high charge transfer rate while keeping the content of conductive fillers low, thus avoiding charge loss and improving performance. These TENGs are utilized to power radio frequency identification (RFID) tags for backscatter communication (BackCom) systems, enabling ultra-massive connectivity in the 6G wireless networks and reducing information communications technology systems' carbon footprint. Specifically, TENGs are used to provide an additional energy source to the passive tags. Results show that TENGs can boost power for BackCom and increase the communication range by 386%. This timely contribution offers a novel route for sustainable 6G applications by exploiting the expanded communication range of BackCom tags.

4.
Bone Jt Open ; 4(11): 859-864, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37952558

RESUMO

Aims: The surgical helmet system (SHS) was developed to reduce the risk of periprosthetic joint infection (PJI), but the evidence is contradictory, with some studies suggesting an increased risk of PJI due to potential leakage through the glove-gown interface (GGI) caused by its positive pressure. We assumed that SHS and glove exchange had an impact on the leakage via GGI. Methods: There were 404 arthroplasty simulations with fluorescent gel, in which SHS was used (H+) or not (H-), and GGI was sealed (S+) or not (S-), divided into four groups: H+S+, H+S-, H-S+, and H-S-, varying by exposure duration (15 to 60 minutes) and frequency of glove exchanges (0 to 6 times). The intensity of fluorescent leakage through GGI was quantified automatically with an image analysis software. The effect of the above factors on fluorescent leakage via GGI were compared and analyzed. Results: The leakage intensity increased with exposure duration and frequency of glove exchanges in all groups. When SHS was used and GGI was not sealed (H+S-), the leakage intensity via GGI had the fastest increase, consistently higher than other groups (H+S+, H-S+ and H-S-) after 30 minutes (p < 0.05) and when there were more than four instances of glove exchange (p < 0.05). Additionally, the leakage was strongly correlated with the duration of exposure (rs = 0.8379; p < 0.050) and the frequency of glove exchange (rs = 0.8198; p < 0.050) in H+S-. The correlations with duration and frequency turned weak when SHS was not used (H-) or GGI was sealed off (S+). Conclusion: Due to personal protection, SHS is recommended in arthroplasties. Meanwhile, it is strongly recommended to seal the GGI of the inner gloves and exchange the outer gloves hourly to reduce the risk of contamination from SHS.

5.
Glob Chall ; 7(6): 2300019, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37287592

RESUMO

Recent advances in wearable energy harvesting technology as solutions to occupational health and safety programs are presented. Workers are often exposed to harmful conditions-especially in the mining and construction industries-where chronic health issues can emerge over time. While wearable sensors technology can aid in early detection and long-term exposure tracking, powering them and the associated risks are often an impediment for their widespread use, such as the need for frequent charging and battery safety. Repetitive vibration exposure is one such hazard, e.g., whole body vibration, yet it can also provide parasitic energy that can be harvested to power wearable sensors and overcome the battery limitations. This review can critically analyze the vibration effect on workers' health, the limitations of currently available devices, explore new options for powering different personal protective equipment devices, and discuss opportunities and directions for future research. The recent progress in self-powered vibration sensors and systems from the perspective of the underlying materials, applications, and fabrication techniques is reviewed. Lastly, the challenges and perspectives are discussed for reference to the researchers who are interested in self-powered vibration sensors.

6.
J Occup Environ Hyg ; 20(5-6): 183-206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37104117

RESUMO

Workers, particularly outdoor workers, are among the populations most disproportionately affected by climate-related hazards. However, scientific research and control actions to comprehensively address these hazards are notably absent. To assess this absence, a seven-category framework was developed in 2009 to characterize the scientific literature published from 1988-2008. Using this framework, a second assessment examined the literature published through 2014, and the current one examines literature from 2014-2021. The objectives were to present literature that updates the framework and related topics and increases awareness of the role of climate change in occupational safety and health. In general, there is substantial literature on worker hazards related to ambient temperatures, biological hazards, and extreme weather but less on air pollution, ultraviolet radiation, industrial transitions, and the built environment. There is growing literature on mental health and health equity issues related to climate change, but much more research is needed. The socioeconomic impacts of climate change also require more research. This study illustrates that workers are experiencing increased morbidity and mortality related to climate change. In all areas of climate-related worker risk, including geoengineering, research is needed on the causality and prevalence of hazards, along with surveillance to identify, and interventions for hazard prevention and control.


Assuntos
Exposição Ocupacional , Saúde Ocupacional , Humanos , Mudança Climática , Raios Ultravioleta/efeitos adversos , Exposição Ocupacional/análise
7.
J Hazard Mater ; 449: 131011, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801719

RESUMO

The emission of fine particles (PM2.5) from diesel trucks is enhanced by low ambient temperatures, which is a fact that has attracted considerable attention. Carbonaceous matter and polycyclic aromatic hydrocarbons (PAHs) are the dominant hazardous materials in PM2.5. These materials induce severe adverse effects on air quality and human health and contribute to climate change. The emissions from heavy- and light-duty diesel trucks were tested at an ambient temperature of - 20 to - 13 â„ƒ and 18-24 â„ƒ. This is the first study to quantify the enhanced carbonaceous matter and PAH emissions from diesel trucks at very low ambient temperatures based on an on-road emission test system. Features affecting diesel emissions, including driving speed, vehicle type, and engine certification level, were considered. The emissions of organic carbon, elemental carbon, and PAHs significantly increased from - 20 to - 13 â„ƒ. The empirical results revealed that intensive abatement of diesel emissions at low ambient temperatures could benefit human health and have a positive influence on climate change. Considering the widespread applications worldwide, an investigation into diesel emissions of carbonaceous matter and PAHs in fine particles at low ambient temperatures is urgently required.

8.
Adv Mater ; 35(19): e2207390, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36269015

RESUMO

Medical soft robotics constitutes a rapidly developing field in the treatment of cardiovascular diseases, with a promising future for millions of patients suffering from heart failure worldwide. Herein, the present state and future direction of artificial muscle-based soft robotic biomedical devices in supporting the inotropic function of the heart are reviewed, focusing on the emerging electrothermally artificial heart muscles (AHMs). Artificial muscle powered soft robotic devices can mimic the action of complex biological systems such as heart compression and twisting. These artificial muscles possess the ability to undergo complex deformations, aiding cardiac function while maintaining a limited weight and use of space. Two very promising candidates for artificial muscles are electrothermally actuated AHMs and biohybrid actuators using living cells or tissue embedded with artificial structures. Electrothermally actuated AHMs have demonstrated superior force generation while creating the prospect for fully soft robotic actuated ventricular assist devices. This review will critically analyze the limitations of currently available devices and discuss opportunities and directions for future research. Last, the properties of the cardiac muscle are reviewed and compared with those of different materials suitable for mechanical cardiac compression.


Assuntos
Insuficiência Cardíaca , Robótica , Humanos , Coração/fisiologia , Insuficiência Cardíaca/terapia , Fenômenos Mecânicos , Miocárdio
9.
Polymers (Basel) ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235892

RESUMO

Natural fibre biopolymer composites with both fibres and matrix being derived from biomaterials are increasingly used in demanding applications, such as sensing, packaging, building, and transport, and require good electrical, thermal, and flame retardant properties. Herein, an investigation of the effectiveness of functionalising nonwoven cotton/poly(lactic acid) (PLA) fibre mats with graphene oxide nanosheets has been reported by using a facile dip-coating method followed by thermal reduction for enhancing the electric, thermal, and abrasion-resistance properties. The manufacturing processes for preparing biocomposites and introducing functionality are readily scalable. Experimental results reveal that with the addition of less than 0.5 wt% graphene nanoplatelets, the biocomposites showed significant improvements in abrasion resistance, electrical conductivity, thermal conductivity, and diffusivity. Furthermore, the composite shows excellent piezo-resistivity to act as strain sensors with a gauge factor of 2.59 at strains up to 1%.

10.
Polymers (Basel) ; 14(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35683861

RESUMO

The selection of biomaterials as biomedical implants is a significant challenge. Ultra-high molecular weight polyethylene (UHMWPE) and composites of such kind have been extensively used in medical implants, notably in the bearings of the hip, knee, and other joint prostheses, owing to its biocompatibility and high wear resistance. For the Anterior Cruciate Ligament (ACL) graft, synthetic UHMWPE is an ideal candidate due to its biocompatibility and extremely high tensile strength. However, significant problems are observed in UHMWPE based implants, such as wear debris and oxidative degradation. To resolve the issue of wear and to enhance the life of UHMWPE as an implant, in recent years, this field has witnessed numerous innovative methodologies such as biofunctionalization or high temperature melting of UHMWPE to enhance its toughness and strength. The surface functionalization/modification/treatment of UHMWPE is very challenging as it requires optimizing many variables, such as surface tension and wettability, active functional groups on the surface, irradiation, and protein immobilization to successfully improve the mechanical properties of UHMWPE and reduce or eliminate the wear or osteolysis of the UHMWPE implant. Despite these difficulties, several surface roughening, functionalization, and irradiation processing technologies have been developed and applied in the recent past. The basic research and direct industrial applications of such material improvement technology are very significant, as evidenced by the significant number of published papers and patents. However, the available literature on research methodology and techniques related to material property enhancement and protection from wear of UHMWPE is disseminated, and there is a lack of a comprehensive source for the research community to access information on the subject matter. Here we provide an overview of recent developments and core challenges in the surface modification/functionalization/irradiation of UHMWPE and apply these findings to the case study of UHMWPE for ACL repair.

11.
Sci Rep ; 11(1): 16586, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400724

RESUMO

Volatile organic compounds (VOCs) are secondary pollutant precursors having adverse impacts on the environment and human health. Although VOC emissions, their sources, and impacts have been investigated, the focus has been on large-scale industrial sources or indoor environments; studies on relatively small-scale enterprises (e.g., auto-repair workshops) are lacking. Here, we performed field VOC measurements for an auto-repair painting facility in Korea and analyzed the characteristics of VOCs emitted from the main painting workshop (top coat). The total VOC concentration was 5069-8058 ppb, and 24-35 species were detected. The VOCs were mainly identified as butyl acetate, toluene, ethylbenzene, and xylene compounds. VOC characteristics differed depending on the paint type. Butyl acetate had the highest concentration in both water- and oil-based paints; however, its concentration and proportion were higher in the former (3256 ppb, 65.5%) than in the latter (2449 ppb, 31.1%). Comparing VOC concentration before and after passing through adsorption systems, concentrations of most VOCs were lower at the outlets than the inlets of the adsorption systems, but were found to be high at the outlets in some workshops. These results provide a theoretical basis for developing effective VOC control systems and managing VOC emissions from auto-repair painting workshops.

13.
Nanoscale Adv ; 3(19): 5465-5486, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36133277

RESUMO

Hybrid piezo-triboelectric nanogenerators constitute a new class of self-powered systems that exploit the synergy of piezoelectric and triboelectric mechanisms to improve energy harvesting efficencies and address the energy and power needs of portable and wearable electronic devices. The unique, synergistic electrical coupling mechanisms of piezoelectric and triboelectric effects increase the electric outputs and energy conversion efficiency of hybrid generators to beyond a linear summation of the contributions from individual triboelectric and piezoelectric mechanisms. Due to their large surface-area-to-volume ratios and outstanding mechanical, electronic and thermal properties, nanomaterials are favourable building blocks for constructing hybrid nanogenerators and represent a large family of flexible energy harvesting electronic structures and devices. Herein, we review the recent advances of hybrid piezo-triboelectric nanogenerators, with a particular focus on microstructure design, synergy mechanisms, and future research opportunities with significant potential for physiological monitoring, health care applications, transportation, and energy harvesting. The main strategies for improving electrical output performance are identified and examined, including novel nanostructures for increasing the contact area of the triboelectric pair, and nano-additives for enhancing the surface potential difference between the triboelectric pair and piezoelectric layers. Future applications and commercialization opportunities of these nanogenerators are also reviewed.

16.
ACS Appl Mater Interfaces ; 12(32): 36578-36588, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32667193

RESUMO

Wearable temperature sensors with high sensitivity, linearity, and flexibility are required to meet the increasing demands for unobtrusive monitoring of temperature changes indicative of the onset of infections and diseases. Herein, we present a new method for engineering highly sensitive and flexible temperature sensors made by sandwiching a poly(3,4-ethylenedioxythiophene):polystyrene (PEDOT:PSS) sensing film between two poly(dimethylsiloxane) (PDMS) substrates. Pre-stretching the sensor to a certain strain can create stable microcracks in the sensing layer that bestow high senstivity and linearity. The average length and density of the microcracks, which dictate the sensor's temperature sensitivity, can be engineered by controlling three key processing parameters, incuding (a) pre-stretching strain, (b) sulfuric acid treatment time, and (c) surface roughness of the substrate. For a given acid treatment time and surface roughness condition, the density and average length of the microcracks increase pre-stretching strain. A smooth PDMS substrate tends to yield long and straight cracks in the PEDOT:PSS film, compared to shorter microcracks with higher density on rough surfaces. Crack density can be further increased via sulfuric acid treatment with an optimum duration of approximately 3 h. Prolonged treatment would result in weak adhesion between the PEDOT:PSS film and the PDMS substrate, which in turn reduces the microcrack density but increases the crack length. By optimizing the three design parameters we have designed a high performance PEDOT:PSS-PDMS sensor that provides a combined high temperature sensitivity of 0.042 °C-1 with an excellent linearity of 0.998 (from 30 to 55 °C), better than the highest temperature sensitivity of PEDOT:PSS based sensors reported in the literature. With a good optical transparency, high temperature sensitivity, excellent linearity, and high flexibility, this microcrack-based sensor is a very promising wearable temperature-sensing solution.


Assuntos
Técnicas Biossensoriais/instrumentação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Polímeros/química , Poliestirenos/química , Dimetilpolisiloxanos/química , Conformação Molecular , Sensibilidade e Especificidade , Ácidos Sulfúricos/química , Propriedades de Superfície , Temperatura , Dispositivos Eletrônicos Vestíveis
17.
ACS Appl Mater Interfaces ; 12(19): 22179-22190, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32302480

RESUMO

Quantitative information on the magnitudes and directions of multiple contacting forces is crucial for a wide range of applications including human-robot interaction, prosthetics, and bionic hands. Herein we report a highly stretchable sensor integrating capacitive and piezoresistive mechanisms that can simultaneously determine multiple forces. The sensor consists of three layers in a sandwich design. The two facesheets serve as both piezoresistive sensors and electrodes for the capacitive sensor, with the core being a porous structure made by using a simple sugar particle template technique to give them high stretchability. The two facesheets contain segregated conductive networks of silver nanowires (AgNWs) and carbon nanofibers (CNFs). By measuring the changes in the electrical resistance of the facesheets and the capacitance between the facesheets, three separate mechanical stimuli can be determined, including normal pressure, in-plane stretch, and transverse shear force. The newly developed multidirectional sensor offers a significant opportunity for the next generation of wearable sensors for human health monitoring and bionic skin for robots.


Assuntos
Nanocompostos/química , Nanofibras/química , Nanofios/química , Dispositivos Eletrônicos Vestíveis , Carbono/química , Dimetilpolisiloxanos/química , Módulo de Elasticidade , Capacitância Elétrica , Impedância Elétrica , Eletrodos , Humanos , Porosidade , Pressão , Prata/química , Resistência à Tração
18.
ACS Appl Mater Interfaces ; 12(17): 20119-20128, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32264673

RESUMO

Liquid metals are fast becoming a new class of universal and frictionless additives for the development of multifunctional soft and flexible materials. Herein, nanodroplets of eutectic gallium-indium alloy, which is liquid at room temperature, were used as a platform for the formulation of electrically conductive and magnetically responsive gels with the incorporation of Fe3O4 nanoparticles. The nanoadditives were prepared in situ within a water-based solution of polyvinyl alcohol. A borax cross-linking reaction was then performed to yield multifunctional flexible and self-healing gels. The physicochemical properties and changes in the nanoadditives at each step of the gel preparation method were characterized. Oxidation and complexation reactions between the liquid metal and iron oxide nanoadditives were observed. A mixture of nanosized functional magnetic Fe3O4/Fe2O3 and In-Fe oxide complexes was found to enable the magnetic susceptibility of the gels. The mechanical and self-healing properties of the gels were assessed, and finally, this flexible and multifunctional material was used as an electronic switch via remote magnetic actuation. The developed conductive and magnetic gels demonstrate great potential for the design of soft electronic systems.

19.
ACS Appl Mater Interfaces ; 12(13): 15631-15643, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32129594

RESUMO

A key missing technology for the emerging field of soft robotics is the provision of highly selective multidirectional tactile sensing that can be easily integrated into a robot using simple fabrication techniques. Conventional strain sensors, such as strain gauges, are typically designed to respond to strain in a single direction and are mounted on the external surface of a structure. Herein, we present a technique for three-dimensional (3D) printing of multidirectional, anisotropic, and constriction-resistive strain sensors, which can be directly integrated into the interior of soft robots. Using a carbon-nanotube-reinforced polylactic acid (PLA-CNT), both the sensing element and the conductive interconnect of the sensor system are 3D-printed. The sensor's sensitivity and anisotropy can be adjusted by controlling the air gap between printed adjacent tracks, infill density, and build orientation relative to the main loading direction. In particular, sensors printed with a near-zero air gap, i.e., adjacent tracks forming a kissing bond, can achieve a gauge factor of ∼1342 perpendicular to the raster orientation and a gauge factor of ∼1 parallel to the raster orientation. The maximum directional selectivity of this ultrasensitive sensor is 31.4, which is approximately 9 times greater than the highest value reported for multidirectional sensors so far. The high sensitivity stems from the progressive opening and closing of the kissing bond between adjacent tracks. The potential of this type of sensors and the simple manufacturing process are demonstrated by integrating the sensor with a soft robotic actuator. The sensors are able to identify and quantify the bending deformation and angle in different directions. The ability to fabricate sensors with tailored footprints and directional selectivity during 3D printing of soft robotic systems paves the way toward highly customizable, highly integrated multifunctional soft robots that are better able to sense both themselves and their environments.

20.
J Mol Diagn ; 22(4): 544-554, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32068069

RESUMO

Differences in the mutation spectrum across ethnicities suggest the importance of identifying genes in addition to common high penetrant genes to estimate the associated breast cancer risk in China. A total of 1338 high-risk breast cancer patients who tested negative for germline BRCA1, BRCA2, TP53, and PTEN mutations between 2007 and 2017 were selected from the Hong Kong Hereditary Breast Cancer Family Registry. Patient samples were subjected to next-generation DNA sequencing using a multigene panel (Color Genomics). All detected pathogenic variants were validated by bidirectional DNA sequencing. The sequencing data were coanalyzed by a bioinformatics pipeline developed in-house. Sixty-one pathogenic variants (4.6%) were identified in this cohort in 11 cancer predisposition genes. Most carriers (77.1%) had early onset of breast cancer (age <45 years), 32.8% had family members with breast cancer, and 11.5% had triple-negative breast cancer. The most common mutated genes were PALB2 (1.4%), RAD51D (0.8%), and ATM (0.8%). A total of 612 variants of unknown significance were identified in 494 patients, and 87.4% of the variants of unknown significance were missense mutations. Pathogenic variants in cancer predisposition genes beyond BRCA1, BRCA2, TP53, and PTEN were detected in an additional 4.6% of patients using the multigene panel. PALB2 (1.4%) and RAD51D (0.8%) were the most commonly mutated genes in patients who tested mutation negative by a four-gene panel.


Assuntos
Biomarcadores Tumorais , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Síndrome Hereditária de Câncer de Mama e Ovário/epidemiologia , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Proteína BRCA1/genética , Proteína BRCA2/genética , Biologia Computacional/métodos , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos/métodos , Genótipo , Síndrome Hereditária de Câncer de Mama e Ovário/diagnóstico , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , PTEN Fosfo-Hidrolase/genética , Prevalência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...