Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 119(11): 8830-8840, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30011084

RESUMO

Mouse double minute 2 (Mdm2) is a multifaceted oncoprotein that is highly regulated with distinct domains capable of cellular transformation. Loss of Mdm2 is embryonically lethal, making it difficult to study in a mouse model without additional genetic alterations. Global overexpression through increased Mdm2 gene copy number (Mdm2Tg ) results in the development of hematopoietic neoplasms and sarcomas in adult animals. In these mice, we found an increase in osteoblastogenesis, differentiation, and a high bone mass phenotype. Since it was difficult to discern the cell lineage that generated this phenotype, we generated osteoblast-specific Mdm2 overexpressing (Mdm2TgOb ) mice in 2 different strains, C57BL/6 and DBA. These mice did not develop malignancies; however, these animals and the MG63 human osteosarcoma cell line with high levels of Mdm2 showed an increase in bone mineralization. Importantly, overexpression of Mdm2 corrected age-related bone loss in mice, providing a role for the proto-oncogenic activity of Mdm2 in bone health of adult animals.


Assuntos
Calcificação Fisiológica/fisiologia , Osteossarcoma/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proto-Oncogenes/fisiologia , Análise de Variância , Animais , Densidade Óssea/fisiologia , Remodelação Óssea/fisiologia , Osso Esponjoso/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/fisiologia , Proto-Oncogene Mas
2.
PLoS One ; 9(12): e113745, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25470594

RESUMO

CXXC finger protein 1 (Cfp1), encoded by the Cxxc1 gene, binds to DNA sequences containing an unmethylated CpG dinucleotide and is an epigenetic regulator of both cytosine and histone methylation. Cxxc1-null mouse embryos fail to gastrulate, and Cxxc1-null embryonic stem cells are viable but cannot differentiate, suggesting that Cfp1 is required for chromatin remodeling associated with stem cell differentiation and embryogenesis. Mice homozygous for a conditional Cxxc1 deletion allele and carrying the inducible Mx1-Cre transgene were generated to assess Cfp1 function in adult animals. Induction of Cre expression in adult animals led to Cfp1 depletion in hematopoietic cells, a failure of hematopoiesis with a nearly complete loss of lineage-committed progenitors and mature cells, elevated levels of apoptosis, and death within two weeks. A similar pathology resulted following transplantation of conditional Cxxc1 bone marrow cells into wild type recipients, demonstrating this phenotype is intrinsic to Cfp1 function within bone marrow cells. Remarkably, the Lin- Sca-1+ c-Kit+ population of cells in the bone marrow, which is enriched for hematopoietic stem cells and multi-potential progenitor cells, persists and expands in the absence of Cfp1 during this time frame. Thus, Cfp1 is necessary for hematopoietic stem and multi-potential progenitor cell function and for the developmental potential of differentiating hematopoietic cells.


Assuntos
Epigênese Genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Transativadores/genética , Animais , Antígenos Ly/metabolismo , Apoptose/genética , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Diferenciação Celular/genética , Linhagem da Célula/genética , Proliferação de Células/genética , Células Cultivadas , Feminino , Immunoblotting , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transativadores/metabolismo
3.
Blood ; 112(2): 320-9, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18339895

RESUMO

In vitro studies indicate that Cul4A ubiquitin ligases target for ubiquitin-mediated proteolysis regulators of cell-cycle progression, apoptosis, development, and DNA repair. In hematopoietic cell lines, studies by our group and others showed that Cul4A ligases regulate proliferation and differentiation in maturing myeloid and erythroid cells. In vivo, Cul4A-deficient embryos die in utero. Cul4A haploinsufficient mice are viable but have fewer erythroid and primitive myeloid progenitors. Yet, little more is known about Cul4A function in vivo. To examine Cul4A function in adults, we generated mice with interferon-inducible deletion of Cul4A. Cul4A deficiency resulted in DNA damage and apoptosis of rapidly dividing cells, and mutant mice died within 3 to 10 days after induction with dramatic atrophy of the intestinal villi, bone marrow, and spleen, and with hematopoietic failure. Cul4A deletion in vivo specifically increased cellular levels of the Cul4A ligase targets Cdt1 and p27(Kip1) but not other known targets. Bone marrow transplantation studies with Cul4A deletion in engrafted cells specifically isolated analysis of Cul4A function to hematopoietic cells and resulted in hematopoietic failure. These recipients died within 9 to 11 days, demonstrating that in hematopoietic cells, Cul4A is essential for survival.


Assuntos
Apoptose , Proteínas Culina/fisiologia , Hematopoese , Sistema Hematopoético/citologia , Animais , Proteínas de Ciclo Celular/análise , Sobrevivência Celular , Proteínas Culina/genética , Inibidor de Quinase Dependente de Ciclina p27/análise , Proteínas de Ligação a DNA/análise , Camundongos , Camundongos Knockout
4.
Blood ; 110(7): 2704-7, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17616641

RESUMO

Several hematopoietic stem-cell (HSC) regulators are controlled by ubiquitin-mediated proteolysis, so the ubiquitin pathway might modulate HSC function. However, this hypothesis has not been formally tested. Cul4A encodes a core subunit of one ubiquitin ligase. Whereas Cul4A-deficient embryos die in utero, Cul4A-haploinsufficient mice are viable but exhibit abnormal hematopoiesis (fewer erythroid and primitive myeloid progenitors). Given these data, we examined whether Cul4A(+/-) HSCs might also be impaired. Using bone marrow transplantation assays, we determined that Cul4A(+/-) HSCs exhibit defects in engraftment and self-renewal capacity. These studies are the first to demonstrate that ubiquitin-mediated protein degradation is important for HSC function. Further, they indicate that a Cul4A ubiquitin ligase targets for degradation one or multiple HSC regulators.


Assuntos
Proteínas Culina/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Proliferação de Células , Quimerismo , Proteínas Culina/genética , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas , Camundongos , Camundongos Transgênicos
5.
Blood ; 107(11): 4291-9, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16467204

RESUMO

As erythroid progenitors differentiate into precursors and finally mature red blood cells, lineage-specific genes are induced, and proliferation declines until cell cycle exit. Cul4A encodes a core subunit of a ubiquitin ligase that targets proteins for ubiquitin-mediated degradation, and Cul4A-haploinsufficient mice display hematopoietic dysregulation with fewer multipotential and erythroid-committed progenitors. In this study, stress induced by 5-fluorouracil or phenylhydrazine revealed a delay in the recovery of erythroid progenitors, early precursors, and normal hematocrits in Cul4A(+/-) mice. Conversely, overexpression of Cul4A in a growth factor-dependent, proerythroblast cell line increased proliferation and the proportion of cells in S phase. When these proerythroblasts were induced to terminally differentiate, endogenous Cul4A protein expression declined 3.6-fold. Its enforced expression interfered with erythrocyte maturation and cell cycle exit and, instead, promoted proliferation. Furthermore, p27 normally accumulates during erythroid terminal differentiation, but Cul4A-enforced expression destabilized p27 and attenuated its accumulation. Cul4A and p27 proteins coimmunoprecipitate, indicating that a Cul4A ubiquitin ligase targets p27 for degradation. These findings indicate that a Cul4A ubiquitin ligase positively regulates proliferation by targeting p27 for degradation and that Cul4A down-regulation during terminal erythroid differentiation allows p27 to accumulate and signal cell cycle exit.


Assuntos
Proteínas Culina/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Precursoras Eritroides/citologia , Eritropoese , Animais , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Fluoruracila/farmacologia , Heterozigoto , Camundongos , Camundongos Knockout
6.
Mol Cell ; 15(2): 166-8, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15260966
7.
Blood ; 101(5): 1769-76, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12393421

RESUMO

The cullin family of proteins is involved in the ubiquitin-mediated degradation of cell cycle regulators. Relatively little is known about the function of the CUL-4A cullin, but its overexpression in breast cancer suggests CUL-4A might also regulate the cell cycle. In addition, since other cullins are required for normal development, we hypothesized that CUL-4A is involved in regulating cell cycle progression during differentiation. We observed that CUL-4A mRNA and protein levels decline 2.5-fold during the differentiation of PLB-985 myeloid cells into granulocytes. To examine the significance of this observation, we overexpressed CUL-4A in these cells and found that modest (< 2-fold), enforced expression of CUL-4A attenuates terminal granulocytic differentiation and instead promotes proliferation. This overexpression similarly affects the differentiation of these cells into macrophages. We recently reported that nearly one half of CUL-4A+/- mice are nonviable, and in this report, we show that the viable heterozygous mice, which have reduced CUL-4A expression, have dramatically fewer erythroid and multipotential progenitors than normal controls. Together these results indicate that appropriate CUL-4A expression is essential for embryonic development and for cell cycle regulation during granulocytic differentiation and suggest this gene plays a broader role in hematopoiesis. Since enforced CUL-4A expression does not alter the cell cycle distribution of uninduced cells but dramatically increases the proportion of induced cells that remains in S-phase and reduces the proportion that accumulates in G0/G1, our results show that this CUL-4A regulatory function is interconnected with differentiation, a novel finding for mammalian cullins.


Assuntos
Proteínas Culina , Granulócitos/citologia , Hematopoese/fisiologia , Proteínas de Neoplasias/fisiologia , Proteínas , Animais , Apoptose , Ciclo Celular , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes myc , Genótipo , Macrófagos/citologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Recombinantes de Fusão/fisiologia , Proteína p130 Retinoblastoma-Like
9.
Mol Cell Biol ; 22(14): 4997-5005, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12077329

RESUMO

Ubiquitin-mediated degradation targets cell cycle regulators for proteolysis. Much of the ubiquitin pathway's substrate specificity is conferred by E3 ubiquitin ligases, and cullins are core components of some E3s. CUL-4A encodes one of six mammalian cullins and is amplified and/or overexpressed in breast cancer, which suggests a role in regulating cell cycle progression. To examine CUL-4A's physiologic function, we generated a CUL-4A deletion mutation in mice. No viable CUL-4A(-/-) pups and no homozygous mutant embryos as early as 7.5 days postcoitum (dpc) were recovered. However, CUL-4A(-/-) blastocysts are viable, hatch, form an inner cell mass and trophectoderm, and implant (roughly 4.5 dpc), indicating that CUL-4A(-/-) embryos die between 4.5 and 7.5 dpc. Despite 87% similarity between the Cul-4A and Cul-4B cullins, the CUL-4A(-/-) lethal phenotype indicates that CUL-4A has one or more distinct function(s). Surprisingly, 44% fewer heterozygous pups were recovered than expected by Mendelian genetics, indicating that many heterozygous embryos also die during gestation due to haploinsufficiency. Taken together, our findings indicate that appropriate CUL-4A expression is critical for early embryonic development.


Assuntos
Proteínas Culina , Desenvolvimento Embrionário e Fetal/fisiologia , Proteínas de Neoplasias/fisiologia , Animais , Sequência de Bases , Blastocisto/citologia , Neoplasias da Mama/genética , DNA/genética , Desenvolvimento Embrionário e Fetal/genética , Feminino , Morte Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Idade Gestacional , Heterozigoto , Homozigoto , Humanos , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...