Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Biotechnol ; 66: 283-291, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33176229

RESUMO

One of the stumbling blocks to advance the field of glycobiology has been the difficulty in synthesis of bespoke carbohydrate-based molecules like glycopolymers (e.g. human milk oligosaccharides) and glycoconjugates (e.g. glycosylated monoclonal antibodies). Recent strides towards using engineered Carbohydrate-Active enZymes (CAZymes) like glycosyl transferases, transglycosidases, and glycosynthases for glycans synthesis has allowed production of diverse glycans. Here, we discuss enzymatic routes for glycans biosynthesis and recent advances in protein engineering strategies that enable improvement of CAZyme specificity and catalytic turnover. We focus on rational and directed evolution methods that have been developed to engineer CAZymes. Finally, we discuss how improved CAZymes have been used in recent years to remodel and synthesize glycans for biotherapeutics and biotechnology related applications.


Assuntos
Metabolismo dos Carboidratos , Carboidratos , Humanos , Oligossacarídeos , Polissacarídeos , Engenharia de Proteínas
2.
Biotechnol Biofuels ; 8(1): 1, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25642283

RESUMO

BACKGROUND: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). The SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. RESULTS: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation. CONCLUSIONS: The formulation of SHs is an important advancement for future multi-omics studies and for better understanding the mechanisms of fermentation inhibition in lignocellulosic hydrolysates. The SH formulated in this work was instrumental for defining the most important inhibitors in the ACH. Major AFEX decomposition products are less inhibitory to yeast fermentation than the products of dilute acid or steam explosion pretreatments; thus, ACH is readily fermentable by yeast without any detoxification.

3.
Biotechnol Biofuels ; 7(1): 175, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25530803

RESUMO

BACKGROUND: Non-productive binding of enzymes to lignin is thought to impede the saccharification efficiency of pretreated lignocellulosic biomass to fermentable sugars. Due to a lack of suitable analytical techniques that track binding of individual enzymes within complex protein mixtures and the difficulty in distinguishing the contribution of productive (binding to specific glycans) versus non-productive (binding to lignin) binding of cellulases to lignocellulose, there is currently a poor understanding of individual enzyme adsorption to lignin during the time course of pretreated biomass saccharification. RESULTS: In this study, we have utilized an FPLC (fast protein liquid chromatography)-based methodology to quantify free Trichoderma reesei cellulases (namely CBH I, CBH II, and EG I) concentration within a complex hydrolyzate mixture during the varying time course of biomass saccharification. Three pretreated corn stover (CS) samples were included in this study: Ammonia Fiber Expansion(a) (AFEX™-CS), dilute acid (DA-CS), and ionic liquid (IL-CS) pretreatments. The relative fraction of bound individual cellulases varied depending not only on the pretreated biomass type (and lignin abundance) but also on the type of cellulase. Acid pretreated biomass had the highest levels of non-recoverable cellulases, while ionic liquid pretreated biomass had the highest overall cellulase recovery. CBH II has the lowest thermal stability among the three T. reesei cellulases tested. By preparing recombinant family 1 carbohydrate binding module (CBM) fusion proteins, we have shown that family 1 CBMs are highly implicated in the non-productive binding of full-length T. reesei cellulases to lignin. CONCLUSIONS: Our findings aid in further understanding the complex mechanisms of non-productive binding of cellulases to pretreated lignocellulosic biomass. Developing optimized pretreatment processes with reduced or modified lignin content to minimize non-productive enzyme binding or engineering pretreatment-specific, low-lignin binding cellulases will improve enzyme specific activity, facilitate enzyme recycling, and thereby permit production of cheaper biofuels.

4.
Biotechnol Biofuels ; 7: 72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24917886

RESUMO

BACKGROUND: In a biorefinery producing cellulosic biofuels, biomass pretreatment will significantly influence the efficacy of enzymatic hydrolysis and microbial fermentation. Comparison of different biomass pretreatment techniques by studying the impact of pretreatment on downstream operations at industrially relevant conditions and performing comprehensive mass balances will help focus attention on necessary process improvements, and thereby help reduce the cost of biofuel production. RESULTS: An on-going collaboration between the three US Department of Energy (DOE) funded bioenergy research centers (Great Lakes Bioenergy Research Center (GLBRC), Joint BioEnergy Institute (JBEI) and BioEnergy Science Center (BESC)) has given us a unique opportunity to compare the performance of three pretreatment processes, notably dilute acid (DA), ionic liquid (IL) and ammonia fiber expansion (AFEX(TM)), using the same source of corn stover. Separate hydrolysis and fermentation (SHF) was carried out using various combinations of commercially available enzymes and engineered yeast (Saccharomyces cerevisiae 424A) strain. The optimal commercial enzyme combination (Ctec2: Htec2: Multifect Pectinase, percentage total protein loading basis) was evaluated for each pretreatment with a microplate-based assay using milled pretreated solids at 0.2% glucan loading and 15 mg total protein loading/g of glucan. The best enzyme combinations were 67:33:0 for DA, 39:33:28 for IL and 67:17:17 for AFEX. The amounts of sugar (kg) (glucose: xylose: total gluco- and xylo-oligomers) per 100 kg of untreated corn stover produced after 72 hours of 6% glucan loading enzymatic hydrolysis were: DA (25:2:2), IL (31:15:2) and AFEX (26:13:7). Additionally, the amounts of ethanol (kg) produced per 100 kg of untreated corn stover and the respective ethanol metabolic yield (%) achieved with exogenous nutrient supplemented fermentations were: DA (14.0, 92.0%), IL (21.2, 93.0%) and AFEX (20.5, 95.0%), respectively. The reason for lower ethanol yield for DA is because most of the xylose produced during the pretreatment was removed and not converted to ethanol during fermentation. CONCLUSIONS: Compositional analysis of the pretreated biomass solids showed no significant change in composition for AFEX treated corn stover, while about 85% of hemicellulose was solubilized after DA pretreatment, and about 90% of lignin was removed after IL pretreatment. As expected, the optimal commercial enzyme combination was different for the solids prepared by different pretreatment technologies. Due to loss of nutrients during the pretreatment and washing steps, DA and IL pretreated hydrolysates required exogenous nutrient supplementation to ferment glucose and xylose efficiently, while AFEX pretreated hydrolysate did not require nutrient supplementation.

5.
Biotechnol Biofuels ; 4: 5, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21342516

RESUMO

BACKGROUND: High enzyme loading is a major economic bottleneck for the commercial processing of pretreated lignocellulosic biomass to produce fermentable sugars. Optimizing the enzyme cocktail for specific types of pretreated biomass allows for a significant reduction in enzyme loading without sacrificing hydrolysis yield. This is especially important for alkaline pretreatments such as Ammonia fiber expansion (AFEX) pretreated corn stover. Hence, a diverse set of hemicellulases supplemented along with cellulases is necessary for high recovery of monosaccharides. RESULTS: The core fungal cellulases in the optimal cocktail include cellobiohydrolase I [CBH I; glycoside hydrolase (GH) family 7A], cellobiohydrolase II (CBH II; GH family 6A), endoglucanase I (EG I; GH family 7B) and ß-glucosidase (ßG; GH family 3). Hemicellulases tested along with the core cellulases include xylanases (LX1, GH family 10; LX2, GH family 10; LX3, GH family 10; LX4, GH family 11; LX5, GH family 10; LX6, GH family 10), ß-xylosidase (LßX; GH family 52), α-arabinofuranosidase (LArb, GH family 51) and α-glucuronidase (LαGl, GH family 67) that were cloned, expressed and/or purified from different bacterial sources. Different combinations of these enzymes were tested using a high-throughput microplate based 24 h hydrolysis assay. Both family 10 (LX3) and family 11 (LX4) xylanases were found to most efficiently hydrolyze AFEX pretreated corn stover in a synergistic manner. The optimal mass ratio of xylanases (LX3 and LX4) to cellulases (CBH I, CBH II and EG I) is 25:75. LßX (0.6 mg/g glucan) is crucial to obtaining monomeric xylose (54% xylose yield), while LArb (0.6 mg/g glucan) and LαGl (0.8 mg/g glucan) can both further increase xylose yield by an additional 20%. Compared with Accellerase 1000, a purified cocktail of cellulases supplemented with accessory hemicellulases will not only increase both glucose and xylose yields but will also decrease the total enzyme loading needed for equivalent yields. CONCLUSIONS: A diverse set of accessory hemicellulases was found necessary to enhance the synergistic action of cellulases hydrolysing AFEX pretreated corn stover. High glucose (around 80%) and xylose (around 70%) yields were achieved with a moderate enzyme loading (~20 mg protein/g glucan) using an in-house developed cocktail compared to commercial enzymes.

6.
Biotechnol Biofuels ; 3: 12, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20534126

RESUMO

BACKGROUND: Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS) and matured whole corn plants (WCP) as feedstocks to produce ethanol using ammonia fiber expansion (AFEX) pretreatment followed by enzymatic hydrolysis (at low enzyme loadings) and cofermentation (for both glucose and xylose) using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST) strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. RESULTS: AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch) had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan). Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading) CS hydrolyzate (resulting in 28 g/L ethanol at 93% metabolic yield) and WCP (resulting in 30 g/L ethanol at 89% metabolic yield) is reported in this work. CONCLUSIONS: The current results indicate the feasibility of co-utilization of whole plants (that is, starchy grains plus cellulosic residues) using an ammonia-based (AFEX) pretreatment to increase bioethanol yield and reduce overall production cost.

7.
Biotechnol Biofuels ; 2(1): 29, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19930679

RESUMO

BACKGROUND: Corn stover composition changes considerably throughout the growing season and also varies between the various fractions of the plant. These differences can impact optimal pretreatment conditions, enzymatic digestibility and maximum achievable sugar yields in the process of converting lignocellulosics to ethanol. The goal of this project was to determine which combination of corn stover fractions provides the most benefit to the biorefinery in terms of sugar yields and to determine the preferential order in which fractions should be harvested. Ammonia fiber expansion (AFEX) pretreatment, followed by enzymatic hydrolysis, was performed on early and late harvest corn stover fractions (stem, leaf, husk and cob). Sugar yields were used to optimize scenarios for the selective harvest of corn stover assuming 70% or 30% collection of the total available stover. RESULTS: The optimal AFEX conditions for all stover fractions, regardless of harvest period, were: 1.5 (g NH3 g-1 biomass); 60% moisture content (dry-weight basis; dwb), 90 degrees C and 5 min residence time. Enzymatic hydrolysis was conducted using cellulase, beta-glucosidase, and xylanase at 31.3, 41.3, and 3.1 mg g-1 glucan, respectively. The optimal harvest order for selectively harvested corn stover (SHCS) was husk > leaf > stem > cob. This harvest scenario, combined with optimal AFEX pretreatment conditions, gave a theoretical ethanol yield of 2051 L ha-1 and 912 L ha-1 for 70% and 30% corn stover collection, respectively. CONCLUSION: Changing the proportion of stover fractions collected had a smaller impact on theoretical ethanol yields (29 - 141 L ha-1) compared to the effect of altering pretreatment and enzymatic hydrolysis conditions (150 - 462 L ha-1) or harvesting less stover (852 - 1139 L ha-1). Resources may be more effectively spent on improving sustainable harvesting, thereby increasing potential ethanol yields per hectare harvested, and optimizing biomass processing rather than focusing on the selective harvest of specific corn stover fractions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...