Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 7(7): 3816-34, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26184285

RESUMO

Proteinase inhibitors are ubiquitous proteins that block the active center or interact allosterically with proteinases and are involved in plant physiological processes and defense responses to biotic and abiotic stresses. The CmSPI gene identified from Cucumis metuliferus encodes a serine type PI (8 kDa) that belongs to potato I type family. To evaluate the effect of silencing CmSPI gene on Papaya ringspot virus resistance, RNA interference (RNAi) with an inter-space hairpin RNA (ihpRNA) construct was introduced into a PRSV-resistant C. metuliferus line. CmSPI was down-regulated in CmSPI RNAi transgenic lines in which synchronously PRSV symptoms were evident at 21 day post inoculation. Alternatively, heterogeneous expression of CmSPI in Nicotiana benthamiana was also conducted and showed that CmSPI can provide resistance to Potato virus Y, another member of Potyvirus, in transgenic N. benthamiana lines. This study demonstrated that CmSPI plays an important role in resistant function against potyviruses in C. metuliferus and N. benthamiana.


Assuntos
Cucumis/imunologia , Inibidores Enzimáticos/imunologia , Doenças das Plantas/virologia , Proteínas de Plantas/imunologia , Potyvirus/fisiologia , Sequência de Bases , Cucumis/genética , Cucumis/virologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Potyvirus/classificação , Potyvirus/genética , Potyvirus/imunologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia
2.
PLoS One ; 8(7): e68749, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874746

RESUMO

A better understanding of virus resistance mechanisms can offer more effective strategies to control virus diseases. Papaya ringspot virus (PRSV), Potyviridae, causes severe economical losses in papaya and cucurbit production worldwide. However, no resistance gene against PRSV has been identified to date. This study aimed to identify candidate PRSV resistance genes using cDNA-AFLP analysis and offered an open architecture and transcriptomic method to study those transcripts differentially expressed after virus inoculation. The whole genome expression profile of Cucumis metuliferus inoculated with PRSV was generated using cDNA-amplified fragment length polymorphism (cDNA-AFLP) method. Transcript derived fragments (TDFs) identified from the resistant line PI 292190 may represent genes involved in the mechanism of PRSV resistance. C. metuliferus susceptible Acc. 2459 and resistant PI 292190 lines were inoculated with PRSV and subsequently total RNA was isolated for cDNA-AFLP analysis. More than 400 TDFs were expressed specifically in resistant line PI 292190. A total of 116 TDFs were cloned and their expression patterns and putative functions in the PRSV-resistance mechanism were further characterized. Subsequently, 28 out of 116 candidates which showed two-fold higher expression levels in resistant PI 292190 than those in susceptible Acc. 2459 after virus inoculation were selected from the reverse northern blot and bioinformatic analysis. Furthermore, the time point expression profiles of these candidates by northern blot analysis suggested that they might play roles in resistance against PRSV and could potentially provide valuable information for controlling PRSV disease in the future.


Assuntos
Cucumis/genética , Cucumis/virologia , Regulação da Expressão Gênica de Plantas , Potyvirus/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA Complementar , Resistência à Doença/genética , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...