Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 581, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737608

RESUMO

The mysterious Planckian metal state, showing perfect T-linear resistivity associated with universal scattering rate, 1/τ = αkBT/ℏ with α ~ 1, has been observed in the normal state of various strongly correlated superconductors close to a quantum critical point. However, its microscopic origin and link to quantum criticality remains an outstanding open problem. Here, we observe quantum-critical T/B-scaling of the Planckian metal state in resistivity and heat capacity of heavy-electron superconductor Ce1-xNdxCoIn5 in magnetic fields near the edge of antiferromagnetism at the critical doping xc ~ 0.03. We present clear experimental evidences of Kondo hybridization being quantum critical at xc. We provide a generic microscopic mechanism to qualitatively account for this quantum critical Planckian state within the quasi-two dimensional Kondo-Heisenberg lattice model near Kondo breakdown transition. We find α is a non-universal constant and depends inversely on the square of Kondo hybridization strength.

2.
Proc Natl Acad Sci U S A ; 119(10): e2116980119, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238676

RESUMO

SignificanceThe elusive strange metal phase (ground state) was observed in a variety of quantum materials, notably in f-electron-based rare-earth intermetallic compounds. Its emergence has remained unclear. Here, we propose a generic mechanism for this phenomenon driven by the interplay of the gapless fermionic short-ranged antiferromagnetic spin correlation and critical bosonic charge fluctuations near a Kondo breakdown quantum phase transition. It is manifested as a fluctuating Kondo-scattering-stabilized critical (gapless) fermionic spin liquid. It shows [Formula: see text] scaling in dynamical electron scattering rate, a signature of quantum criticality. Our results on quasilinear-in-temperature scattering rate and logarithmic-in-temperature divergence in specific heat coefficient as temperature vanishes were recently seen in CePd[Formula: see text]NixAl.

3.
Phys Rev Lett ; 116(17): 177002, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27176534

RESUMO

The underlying Dirac point is central to the profound physics manifested in a wide class of materials. However, it is often difficult to drive a system with Dirac points across the massless fermionic critical point. Here by exploiting screening of local moments under spin-orbit interactions in a Kondo lattice, we show that below the Kondo temperature, the Kondo lattice undergoes a topological transition from a strong topological insulator to a weak topological insulator at a finite temperature T_{D}. At T_{D}, massless Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our analysis indicates that the emergent relativistic symmetry dictates nontrivial thermal responses over large parameter and temperature regimes. In particular, it yields critical scaling behaviors both in magnetic and transport responses near T_{D}.

4.
Sci Rep ; 6: 24102, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27064108

RESUMO

There has been growing interest in searching for exotic self-conjugate, charge-neutral low-energy fermionic quasi-particles, known as Majorana fermions (MFs) in solid state systems. Their signatures have been proposed and potentially observed at edges of topological superconcuctors with non-trivial topological invariant in the bulk electronic band structure. Much effort have been focused on realizing MFs in odd-parity superconductors made of strong spin-orbit coupled materials in proximity to conventional superconductors. In this paper, we propose a novel mechanism for realizing MFs in 2D spin-singlet topological superconducting state induced by doping a correlated quantum spin Hall (Kane-Mele) insulator. Via a renormalized mean-field approach, the system is found to exhibits time-reversal symmetry (TRS) breaking d(x2-y2) + id(xy)-wave (chiral d-wave) superconductivity near half-filling in the limit of large on-site repulsion. Surprisingly, however, at large spin-orbit coupling, the system undergoes a topological phase transition and enter into a new topological phase protected by a pseudo-spin Chern number, which can be viewed as a persistent extension of the quantum spin Hall phase upon doping. From bulk-edge correspondence, this phase is featured by the presence of two pairs of counter-propagating helical Majorana modes per edge, instead of two chiral propagating edge modes in the d + id' superconductors.

5.
J Phys Condens Matter ; 28(17): 175003, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27045815

RESUMO

The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, ρc(ω) proportional |ω − µF|(r) (0 < r < 1) near the Fermi energy µF. At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r = 0 to r = rc < 1. Surprisingly, in the 2CK phase, different power-law scalings from the well-known [Formula: see text] or [Formula: see text] form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.

6.
Phys Rev Lett ; 111(1): 016402, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23863017

RESUMO

We investigate the competition between the spin-orbit interaction of itinerant electrons and their Kondo coupling with local moments densely distributed on the honeycomb lattice. We find that the model at half-filling displays a quantum phase transition between topological and Kondo insulators at a nonzero Kondo coupling. In the Kondo-screened case, tuning the electron concentration can lead to a new topological insulator phase. The results suggest that the heavy-fermion phase diagram contains a new regime with a competition among topological, Kondo-coherent and magnetic states, and that the regime may be especially relevant to Kondo lattice systems with 5d-conduction electrons. Finally, we discuss the implications of our results in the context of the recent experiments on SmB(6) implicating the surface states of a topological insulator, as well as the existing experiments on the phase transitions in SmB(6) under pressure and in CeNiSn under chemical pressure.

7.
Phys Rev Lett ; 102(21): 216803, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19519125

RESUMO

We investigate the nonequilibrium transport near a quantum phase transition in a generic and relatively simple model, the dissipative resonant level model, that has many applications for nanosystems. We formulate a rigorous mapping and apply a controlled frequency-dependent renormalization group approach to compute the nonequilibrium current in the presence of a finite bias voltage V and a finite temperature T. For V-->0, we find that the conductance has its well-known equilibrium form, while it displays a distinct nonequilibrium profile at finite voltage.

8.
Phys Rev Lett ; 97(16): 166802, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17155422

RESUMO

We discuss the realization of the quantum-critical non-Fermi-liquid state, originally discovered within the two-impurity Kondo model, in double-quantum-dot systems. Contrary to common belief, the corresponding fixed point is robust against particle-hole and various other asymmetries and is unstable only to charge transfer between the two dots. We propose an experimental setup where such charge transfer processes are suppressed, allowing a controlled approach to the quantum-critical state. We also discuss transport and scaling properties in the vicinity of the critical point.

9.
Phys Rev Lett ; 93(20): 207004, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15600960

RESUMO

Quantum antiferromagnets on geometrically frustrated lattices often allow a number of unusual paramagnetic ground states. The fate of these Mott insulators upon doping is an important issue that may shed some light on the high T(c) cuprate problem. We consider the doped Mott insulator on the Shastry-Sutherland lattice via the t-J model. The U(1) slave-boson mean-field theory reveals the strong competition between different broken symmetry states. It is found that, in some ranges of doping, there exist superconducting phases with or without coexisting translational-symmetry-breaking orders such as the staggered flux or dimerization. Our results will be directly relevant to SrCu2(BO3)(2) when this material is doped in future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...