Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38743481

RESUMO

A Gram-stain-negative, yellow-pigmented, strictly aerobic, non-flagellated, motile by gliding, rod-shaped bacterium, designated strain YSD2104T, was isolated from a coastal sediment sample collected from the southeastern part of the Yellow Sea. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain YSD2104T was closely related to three type strains, Lutimonas vermicola IMCC1616T (97.4 %), Lutimonas saemankumensis SMK-142T (96.9 %), and Lutimonas halocynthiae RSS3-C1T (96.8 %). Strain YSD2104T has a single circular chromosome of 3.54 Mbp with a DNA G+C content of 38.3 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain YSD2104T and the three type strains (L. vermicola IMCC1616 T, L. saemankumensis SMK-142T, and L. halocynthiae RSS3-C1T) were 74.0, 86.2 and 73.6 %, and 17.9, 30.3 and 17.8 %, respectively. Growth was observed at 20-30 °C (optimum, 30 °C), at pH 6.5-8.5 (optimum, pH 7.0), and with NaCl concentrations of 1.5-3.5 % (optimum, 2.5 %). The major carotenoid was zeaxanthin, and flexirubin-type pigment was not produced. The major respiratory quinone was menaquinone-6. The major fatty acids (>10 %) were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), and summed feature 9 (iso-C17 : 1 ω9c and/or 10-methyl C16 : 0). The major polar lipids were phosphatidylethanolamine, one unidentified aminophospholipid, two unidentified aminolipids, and eight unidentified lipids. Conclusively, based on this polyphasic approach, we classified strain YSD2104T (=KCTC 102008T=JCM 36287T) as representing a novel species of the genus Lutimonas and proposed the name Lutimonas zeaxanthinifaciens sp. nov.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Água do Mar , Análise de Sequência de DNA , Vitamina K 2 , Zeaxantinas , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Água do Mar/microbiologia , China
2.
Mar Drugs ; 22(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38248664

RESUMO

This study aims to explore the potential inhibition effects of staurosporine isolated from a Streptomyces sp. SNC087 strain obtained from seawater on nasal polyps. Staurosporine possesses antimicrobial and antihypertensive activities. This research focuses on investigating the effects of staurosporine on suppressing the growth and development of nasal polyps and elucidating the underlying mechanisms involved. The experimental design includes in vitro and ex vivo evaluations to assess the inhibition activity and therapeutic potential of staurosporine against nasal polyps. Nasal polyp-derived fibroblasts (NPDFs) were stimulated with TGF-ß1 in the presence of staurosporine. The levels of α-smooth muscle actin (α-SMA), collagen type-I (Col-1), fibronectin, and phosphorylated (p)-Smad 2 were investigated using Western blotting. VEGF expression levels were analyzed in nasal polyp organ cultures treated with staurosporine. TGF-ß1 stimulated the production of Col-1, fibronectin, and α-SMA and was attenuated by staurosporine pretreatment. Furthermore, these inhibitory effects were mediated by modulation of the signaling pathway of Smad 2 in TGF-ß1-induced NPDFs. Staurosporine also inhibits the production of VEGF in ex vivo NP tissues. The findings from this study will contribute to a better understanding of staurosporine's role in nasal polyp management and provide insights into its mechanisms of action.


Assuntos
Pólipos Nasais , Streptomyces , Humanos , Fibronectinas , Pólipos Nasais/tratamento farmacológico , Estaurosporina/farmacologia , Fator de Crescimento Transformador beta1 , Fator A de Crescimento do Endotélio Vascular
3.
Microorganisms ; 11(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138119

RESUMO

The aim of this study is to describe the general features and eco-friendly biosynthesis of silver nanoparticles (AgNPs) from the marine bacterium Aggregatimonas sangjinii F202Z8T. To the best of our knowledge, no previous study has reported the biosynthesis of AgNPs using this strain. The formation of AgNPs using F202Z8T was synthesized intracellularly without the addition of any disturbing factors, such as antibiotics, nutrient stress, or electron donors. The AgNPs were examined using UV-vis spectrophotometry, transmission electron microscopy, energy-dispersive X-ray spectroscopy, nanoparticle tracking analysis, and Fourier transform infrared spectrometry. The UV-vis spectrum showed a peak for the synthesized AgNPs at 465 nm. The AgNPs were spherical, with sizes ranging from 27 to 82 nm, as denoted by TEM and NTA. FTIR showed various biomolecules including proteins and enzymes that may be involved in the synthesis and stabilization of AgNPs. Notably, the AgNPs demonstrated broad-spectrum antibacterial effects against various pathogenic Gram-positive and Gram-negative bacteria, including Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The minimum inhibitory concentrations and minimum bactericidal concentrations of the F202Z8T-formed AgNPs were 80 and 100 µg/mL, 40 and 50 µg/mL, and 30 and 40 µg/mL against E. coli, B. subtilis, and S. aureus, respectively. This study suggests that A. sangjinii F202Z8T is a candidate for the efficient synthesis of AgNPs and may be suitable for the formulation of new types of bactericidal substances.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37750753

RESUMO

A Gram-negative, pale yellow-pigmented, non-flagellated, motile, rod-shaped and aerobic bacterium, designated strain PG104T, was isolated from red algae Grateloupia sp. collected from the coastal area of Pohang, Republic of Korea. Growth of strain PG104T was observed at 15-35 °C (optimum, 30 °C), pH 6.0-10.0 (optimum, pH 7.5-8.0) and in the presence of 0-8.0 % (w/v) NaCl (optimum, 5.0 %). The predominant fatty acids included C17 : 0, C18 : 0, 11-methyl C18 : 1 ω7c and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and the major respiratory quinone was Q-10. Polar lipids included phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified lipid and one unidentified aminolipid. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain PG104T formed a phylogenetic lineage with members of the genus Falsirhodobacter and exhibited 16S rRNA gene sequence similarities of 97.1 and 96.6 % to Falsirhodobacter deserti W402T and Falsirhodobacter halotolerans JA744T, respectively. The complete genome of strain PG104T consisted of a single circular chromosome of approximately 2.8 Mbp with five plasmids. Based on polyphasic taxonomic data, strain PG104T represents a novel species in the genus Falsirhodobacter, for which the name Falsirhodobacter algicola sp. nov. is proposed. The type strain of Falsirhodobacter algicola is PG104T (=KCTC 82230T=JCM 34380T).


Assuntos
Gammaproteobacteria , Rhodobacteraceae , Rodófitas , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Rhodobacteraceae/genética
5.
Front Microbiol ; 14: 1221865, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583517

RESUMO

Introduction: Bacterial plant diseases cause tremendous economic losses worldwide. However, a few effective and sustainable control methods are currently available. To discover novel and effective management approaches, we screened marine fungi for their antibacterial activity against phytopathogenic bacteria in vitro and in vivo. Methods: We screened the culture broth of 55 fungal strains isolated from various marine sources (seawater, algae, and sediment) for their in vitro antibacterial activity using the broth microdilution method. Then, only the fungal strain (designated UL-Ce9) with higher antibacterial activity in vitro was tested in an in vivo experiment against tomato bacterial wilt. The active compounds of UL-Ce9 were extracted using ethyl acetate, purified by a series of chromatography, and the structure was elucidated by nuclear magnetic resonance spectroscopy. Pesticide formulations of toluquinol were prepared as soluble concentrates and wettable powder. The disease control efficacy of toluquinol formulations was evaluated against blight of rice and the bacterial wilt of tomato. Results and discussion: The culture broth of UL-Ce9 showed high antibacterial activity against Agrobacterium tumefaciens, Ralstonia solanacearum, and Xanthomonas arboricola pv. pruni in vitro, and we selected UL-Ce9 for the in vivo test. The UL-Ce9 culture broth completely suppressed the bacterial wilt of tomato at a dilution of 1:5. The phylogenetic analysis identified UL-Ce9 as Penicillium griseofulvum, and the antibacterial metabolites were revealed as patulin, gentisyl alcohol, and toluquinol, all of which were associated with the biosynthetic pathway of the mycotoxin patulin. Patulin exhibited the highest antibacterial activity against 16 phytopathogenic bacteria in vitro, followed by toluquinol and gentisyl alcohol. As patulin is toxic, we selected toluquinol to investigate its potential use as a pesticide against bacterial plant diseases. Compared with the chemicals currently being applied in agriculture (streptomycin and oxytetracycline), toluquinol formulations exhibited similar and higher control efficacies against bacterial leaf blight of rice and bacterial wilt of tomato, respectively. To the best of our knowledge, this is the first report of the antibacterial activity of toluquinol against phytopathogenic bacteria. Our results suggest that toluquinol is a potential candidate for the development of novel and effective pesticides for the management of bacterial plant diseases.

6.
Mycobiology ; 50(4): 244-253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158047

RESUMO

Trichoderma fungi have been intensively studied for mycoparasitism, and the latter is closely related to their cell-wall degrading enzymes including chitinase. Here, we studied marine-derived Trichoderma spp., isolated from distinct sources and locations, for chitinolytic and antifungal activity. Based on morphological and phylogenetic analyses, two strains designated GJ-Sp1 and TOP-Co8 (isolated from a marine sponge and a marine alga, respectively) were identified as Trichoderma bissettii. This species has recently been identified as a closely related species to Trichoderma longibrachiatum. The extracellular crude enzymes of GJ-Sp1 and TOP-Co8 showed activities of chitobiosidase and ß-N-acetylglucosaminidase (exochitinase) and chitotriosidase (endochitinase). The optimum chitinolytic activity of the crude enzymes was observed at 50 °C, pH 5.0, 0-0.5% NaCl concentrations, and the activities were stable at temperatures ranging from 10 to 40 °C for 2 h. Moreover, the crude enzymes showed inhibitory activity against hyphal growth of two filamentous fungi Aspergillus flavus and Aspergillus niger. To the best of our knowledge, this is the first report of the chitinolytic and antifungal activity of T. bissettii.

7.
Mitochondrial DNA B Resour ; 7(4): 640-641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425856

RESUMO

Fungal species in the genus Trichoderma are widely used for industrial enzyme production and as biocontrol agents. In this study, we report the complete mitochondrial genome of a marine-derived Trichoderma simmonsii strain GH-Sj1, which belongs to the Harzianum clade of Trichoderma. GH-Sj1 was isolated from an edible sea alga Saccharina japonica collected from the southern coast of Korea. This newly assembled circular molecule is 28,668 bp in length and consists of 15 protein-coding genes, 26 transfer RNA genes, and two ribosomal RNA genes. Phylogenetic analysis using the maximum likelihood method shows that T. simmonsii GH-Sj1 is closely related to Trichoderma harzianum and Trichoderma lixii. To the best of our knowledge, this is the first characterization of a marine-derived mitogenome within the genus Trichoderma.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35044903

RESUMO

A strictly aerobic, Gram-stain-negative, gliding, rod-shaped bacteria, designated strain S481T, was isolated from a surface seawater sample collected at Gunsan marina, in the West Sea of the Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain S481T formed a monophyletic clade with members of the genus Fulvivirga, showing 93.7-95.8% sequence similarity to the type strains. Strain S481T has a single circular chromosome of 4.13 Mbp with a DNA G+C content of 37.3 mol%. The values of average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization between strain S481T and all genome-sequenced species of the genus Fulvivirga were below 71.2%, 68.6% and 18.9%, respectively, indicating lower values than the standard cut-offs for species delineation. Growth was observed at 20-42 °C (optimum, 37 °C), at pH 6-8 (optimum, pH 7) and with 0 - 6 % NaCl (optimum, 1-2 %). The major fatty acids (>10%) were iso-C15:0, iso-C15:1 G and C16:1ω5c. The respiratory quinone was MK-7. The major polar lipids were identified as phosphatidylethanolamine, three unidentified aminolipids and five unidentified lipids. Based on the results of phenotypic characterization, phylogenetic analysis and genome-based comparison, strain S481T represents a novel species in the genus Fulvivirga, for which we propose the name Fulvivirga lutea sp. nov. The type strain is S481T (=KCTC 82209T=JCM 34505T).


Assuntos
Bacteroidetes/classificação , Filogenia , Água do Mar , Técnicas de Tipagem Bacteriana , Bacteroidetes/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , República da Coreia , Água do Mar/microbiologia , Análise de Sequência de DNA , Vitamina K 2/química
9.
Antonie Van Leeuwenhoek ; 115(2): 325-335, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35066733

RESUMO

Microbially synthesized nanoparticles has received increasing attentions owing to the broad applications in biology and medicine. In this study, we report a novel bacterium that biologically generates silver nanoparticles (AgNPs). This bacterium, designated strain F202Z8T, was isolated from a rusty iron plate found in the intertidal region of Taean, South Korea. The morphological, biochemical and molecular characteristics predicted that strain F202Z8T belongs to the family Flavobacteriaceae. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain F202Z8T forms a distinct lineage with closely related genera Maribacter, Pelagihabitans, Pseudozobellia, Zobellia, Pricia, and Costertonia and showed the highest similarity to Maribacter aestuarii GY20T (94.5%). The digital DNA-DNA hybridization and average nucleotide identity values calculated from the whole genome-sequence comparison between strain F202Z8T and other members of the family Flavobacteriaceae were in the ranges of 12.7%-16.9% and 70.3%-74.4%, respectively, suggesting that strain F202Z8T represented a novel genus. The complete genome sequence of strain F202Z8T is 4,723,614 bp, with 43.26% G + C content. Based on the COG, GO, KEGG, NR, and Swiss-Prot databases, the genomic analysis of F202Z8T revealed the presence of 17 putative genes responsible for the synthesis of AgNPs. Our polyphasic taxonomic results suggested that this strain represents a novel species of a novel genus in the family Flavobacteriaceae, for which the name Aggregatimonas sangjinii gen. nov., sp. nov. is proposed. The type strain of Aggregatimonas sangjinii is F202Z8T (= KCCM 43411T = LMG 31494T). Overall, our data provide fundamental information to potentially utilize this novel bacterium for synthesis of nanoparticles.


Assuntos
Flavobacteriaceae , Nanopartículas Metálicas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Flavobacteriaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Água do Mar , Análise de Sequência de DNA , Prata
10.
BMC Genomics ; 22(1): 830, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789157

RESUMO

BACKGROUND: Trichoderma is a genus of fungi in the family Hypocreaceae and includes species known to produce enzymes with commercial use. They are largely found in soil and terrestrial plants. Recently, Trichoderma simmonsii isolated from decaying bark and decorticated wood was newly identified in the Harzianum clade of Trichoderma. Due to a wide range of applications in agriculture and other industries, genomes of at least 12 Trichoderma spp. have been studied. Moreover, antifungal and enzymatic activities have been extensively characterized in Trichoderma spp. However, the genomic information and bioactivities of T. simmonsii from a particular marine-derived isolate remain largely unknown. While we screened for asparaginase-producing fungi, we observed that T. simmonsii GH-Sj1 strain isolated from edible kelp produced asparaginase. In this study, we report a draft genome of T. simmonsii GH-Sj1 using Illumina and Oxford Nanopore technologies. Furthermore, to facilitate biotechnological applications of this species, RNA-sequencing was performed to elucidate the transcriptional profile of T. simmonsii GH-Sj1 in response to asparaginase-rich conditions. RESULTS: We generated ~ 14 Gb of sequencing data assembled in a ~ 40 Mb genome. The T. simmonsii GH-Sj1 genome consisted of seven telomere-to-telomere scaffolds with no sequencing gaps, where the N50 length was 6.4 Mb. The total number of protein-coding genes was 13,120, constituting ~ 99% of the genome. The genome harbored 176 tRNAs, which encode a full set of 20 amino acids. In addition, it had an rRNA repeat region consisting of seven repeats of the 18S-ITS1-5.8S-ITS2-26S cluster. The T. simmonsii genome also harbored 7 putative asparaginase-encoding genes with potential medical applications. Using RNA-sequencing analysis, we found that 3 genes among the 7 putative genes were significantly upregulated under asparaginase-rich conditions. CONCLUSIONS: The genome and transcriptome of T. simmonsii GH-Sj1 established in the current work represent valuable resources for future comparative studies on fungal genomes and asparaginase production.


Assuntos
Trichoderma , Asparaginase , Genoma , Hypocreales , Telômero , Trichoderma/genética
11.
Toxins (Basel) ; 13(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34822523

RESUMO

Retinoic acid (RA) is one of the factors crucial for cell growth, differentiation, and embryogenesis; it interacts with the retinoic acid receptor and retinoic acid X receptor to eventually regulate target gene expression in chordates. RA is transformed from retinaldehyde via oxidization by retinaldehyde dehydrogenase (RALDH), which belongs to the family of oxidoreductases. Several chemicals, including disulphiram, diethylaminobenzaldehyde, and SB-210661, can effectively inhibit RALDH activity, potentially causing reproductive and developmental toxicity. The modes of action can be sequentially explained based on the molecular initiating event toward key events, and finally the adverse outcomes. Adverse outcome pathway (AOP) is a conceptual and theoretical framework that describes the sequential chain of casually liked events at different biological levels from molecular events to adverse effects. In the present review, we discussed a recently registered AOP (AOP297; inhibition of retinaldehyde dehydrogenase leads to population decline) to explain and support the weight of evidence for RALDH inhibition-related developmental toxicity using the existing knowledge.


Assuntos
Embrião de Mamíferos/metabolismo , Embrião não Mamífero/metabolismo , Retinal Desidrogenase/antagonistas & inibidores , Tretinoína/antagonistas & inibidores , Rotas de Resultados Adversos , Animais , Diferenciação Celular , Embrião de Mamíferos/embriologia , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário , Peixes , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Coelhos , Ratos
12.
Artigo em Inglês | MEDLINE | ID: mdl-33502305

RESUMO

A Gram-stain-negative, motile, facultatively anaerobic rod-shaped bacterium with a polar flagellum, designated strain S7T was isolated from seawater sample collected at Uljin marina, in the East Sea of the Republic of Korea. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain S7T was affiliated with members of genus Ferrimonas, showing the highest sequence similarities to the type strains Ferrimonas senticii P2S11T (95.7 %), Ferrimonas balearica PATT (95.7 %) and Ferrimonas pelagia CBA4601T (95.1 %). The genome was 4.13 Mbp with a DNA G+C content of 49.4 %. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between S7T and F. senticii P2S11T and F. balearica PATT yielded ANI values of 71.9 and 70.7 %, and dDDH values of 15.1 and 13.9 %, respectively. The genome of S7T was predicted to encode triacylglycerol lipase, phospholipase A1/A2 and lysophospholipase as well as esterase involved in lipolytic processes. Growth was observed at 8-31 °C (optimum 27 °C), at pH 7-9 (optimum pH 7), and with 1-6 % NaCl (optimum 2 %). The respiratory quinones were MK-7 and Q-7 and the major fatty acids (>10 %) were C16 : 0, C16 : 1ω9c, C17 : 1ω8c, and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The major polar lipids were identified as phosphatidylethanolamine, phosphatidylglycerol, two unidentified phospholipids, and three unidentified lipids. On the basis of the results of this polyphasic analysis, it was determined that the strain represents a novel species of the genus Ferrimonas, for which the name Ferrimonas lipolytica sp. nov. is proposed. The type strain is S7T (=KCTC 72490T=JCM 33793T).


Assuntos
Gammaproteobacteria/classificação , Filogenia , Água do Mar/microbiologia , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
Microorganisms ; 10(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35056479

RESUMO

Salterns are hypersaline environments that are inhabited by diverse halophilic microorganisms, including fungi. In this study, we isolated a fungal strain SK1-1 from a saltern in the Republic of Korea, which was identified as Asperillus reticulatus. This is the first reported saline-environment-derived A. reticulatus that belongs to the Aspergillus penicillioides clade and encompasses xerophilic fungi. SK1-1 was halophilic, obligately requiring NaCl for growth, with a maximum radial growth of 6%-9% (w/v) NaCl. To facilitate the biotechnological application of halophilic fungi, we screened the SK1-1 strain for proteolytic activity. Proteases have widespread applications in food processing, detergents, textiles, and waste treatment, and halophilic proteases can enable protein degradation in high salt environments. We assessed the proteolytic activity of the extracellular crude enzyme of SK1-1 using azocasein as a substrate. The crude protease exhibited maximum activity at 40-50 °C, pH 9.5-10.5, and in the absence of NaCl. It was also able to retain up to 69% of its maximum activity until 7% NaCl. Protease inhibitor assays showed complete inhibition of the proteolytic activity of crude enzymes by Pefabloc® SC. Our data suggest that the halophilic A. reticulatus strain SK1-1 produces an extracellular alkaline serine protease.

14.
Mycobiology ; 48(3): 195-203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37970562

RESUMO

Marine yeasts have tremendous potential in industrial applications but have received less attention than terrestrial yeasts and marine filamentous fungi. In this study, we have screened marine yeasts for amylolytic activity and identified an amylase-producing strain PH-Gra1 isolated from sea algae. PH-Gra1 formed as a coral-red colony on yeast-peptone-dextrose (YPD) agar; the maximum radial growth was observed at 22 °C, pH 6.5 without addition of NaCl to the media. Based on the morphology and phylogenetic analyses derived from sequences of internal transcribed spacer (ITS) and a D1/D2 domain of large subunit of ribosomal DNA, PH-Gra1 was designated Sporidiobolus pararoseus. S. pararoseus is frequently isolated from marine environments and known to produce lipids, carotenoids, and several enzymes. However, its amylolytic activity, particularly the optimum conditions for enzyme activity and stability, has not been previously characterized in detail. The extracellular crude enzyme of PH-Gra1 displayed its maximum amylolytic activity at 55 °C, pH 6.5, and 0%-3.0% (w/v) NaCl under the tested conditions, and the activity increased with time over the 180-min incubation period. In addition, the crude enzyme hydrolyzed potato starch more actively than corn and wheat starch, and was stable at temperatures ranging from 15 °C to 45 °C for 2 h. This report provides a basis for additional studies of marine yeasts that will facilitate industrial applications.

15.
Mycobiology ; 47(2): 165-172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448136

RESUMO

Species that belong to Penicillium section Sclerotiora are commonly found in various terrestrial environments, but only a few have been reported in marine environments. Because the number of Penicillium species reported in marine environments is increasing, we investigated the diversity of Penicillium section Sclerotiora in marine environments in Korea. Based on sequence analyses of ß-tubulin and calmodulin loci, 21 strains of section Sclerotiora were identified as P. bilaiae, P. daejeonium, P. exsudans, P. herquei, P. cf. guanacastense, P. mallochii, P. maximae, and P. viticola. Three of them were confirmed as new to Korea: P. exsudans, P. mallochii, and P. maximae. Here, we have provided detailed morphological descriptions of these unrecorded species.

16.
J Microbiol ; 57(9): 717-724, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31452042

RESUMO

Salterns are hypersaline extreme environments with unique physicochemical properties such as a salinity gradient. Although the investigation of microbiota in salterns has focused on archaea and bacteria, diverse fungi also thrive in the brine and soil of salterns. Fungi isolated from salterns are represented by black yeasts (Hortaea werneckii, Phaeotheca triangularis, Aureobasidium pullulans, and Trimmatostroma salinum), Cladosporium, Aspergillus, and Penicillium species. Most studies on saltern-derived fungi gave attention to black yeasts and their physiological characteristics, including growth under various culture conditions. Since then, biochemical and molecular tools have been employed to explore adaptation of these fungi to salt stress. Genome databases of several fungi in salterns are now publicly available and being used to elucidate salt tolerance mechanisms and discover the target genes for agricultural and industrial applications. Notably, the number of enzymes and novel metabolites known to be produced by diverse saltern-derived fungi has increased significantly. Therefore, fungi in salterns are not only interesting and important subjects to study fungal biodiversity and adaptive mechanisms in extreme environments, but also valuable bioresources with potential for biotechnological applications.


Assuntos
Fungos/fisiologia , Sais/química , Cloreto de Sódio/metabolismo , Solo/química , Adaptação Fisiológica , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Tolerância ao Sal
17.
Int J Syst Evol Microbiol ; 69(5): 1355-1360, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30806616

RESUMO

A Gram-stain-negative, aerobic, non-motile, rod-shaped, agarolytic and carrageenolytic bacterial strain, designated UJ94T, was isolated from seawater of Uljin in the Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain UJ94T shared sequence similarities of 98.4, 96.1 and 95.4 % with Tamlana agarivorans JW-26T, Tamlana sedimentorum KMM 9545T and Tamlana crocina HST1-43T, respectively. Growth of strain UJ94T was observed at 4-37 °C and pH 6.5-8.0 in the presence of 2-9 % (w/v) NaCl. The major fatty acids of strain UJ94T were iso-C15 : 0, summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) and iso-C17 : 0 3-OH; MK-6 was the predominant menaquinone. Phosphatidylethanolamine, two unidentified aminolipids and five unidentified lipids were detected as major polar lipids. The whole circular genome comprised 4 116 543 bp and had a G+C content of 35.2 mol%. The ranges of average nucleotide identity and in silico DNA-DNA hybridization estimated by genome-to-genome distance were 90.6-74.2 % and 47.6-14.6 %, respectively, with the type strains of T. agarivorans and T. sedimentorum. The present polyphasic study, including phylogenetic, chemotaxonomic, biochemical and genomic data, suggested that strain UJ94T represents a novel species of the genus Tamlana, for which the name Tamlana carrageenivorans sp. nov. is proposed. The type strain is UJ94T (=KCTC 62451T=NBRC 113234T).


Assuntos
Carragenina/metabolismo , Flavobacteriaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
J Microbiol ; 57(5): 372-380, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30806979

RESUMO

Chitin is the most abundant biopolymer in marine environments. To facilitate its utilization, our laboratory screened marine-derived fungal strains for chitinolytic activity. One chitinolytic strain isolated from seawater, designated YS2-2, was identified as Acremonium species based on morphological and phylogenetic analyses. Acremonium species are cosmopolitan fungi commonly isolated from both terrestrial and marine environments, but their chitinolytic activity is largely unknown. The extracellular crude enzyme of YS2-2 exhibited optimum chitinolytic activity at pH 6.0-7.6, 23-45°C, and 1.5% (w/v) NaCl. Degenerate PCR revealed the partial cDNA sequence of a putative chitinase gene, chiA, in YS2-2. The expression of chiA was dramatically induced in response to 1% (w/v) colloidal chitin compared to levels under starvation, chitin powder, and glucose conditions. Moreover, the chiA transcript levels were positively correlated with chitinolytic activities under various colloidal chitin concentrations, suggesting that ChiA mediates chitinolytic activity in this strain. Our results provide a basis for additional studies of marinederived chitinolytic fungi aimed at improving industrial applications.


Assuntos
Acremonium/genética , Acremonium/metabolismo , Quitina/metabolismo , Quitinases/genética , Quitinases/metabolismo , Acremonium/classificação , Acremonium/isolamento & purificação , Filogenia , Água do Mar/microbiologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-30533631

RESUMO

Marinobacterium aestuarii ST58-10T was identified as a benzene-degrading aerobic bacterium isolated from estuarine sediment in the Republic of Korea. The genome of strain ST58-10T was found to be composed of a single circular chromosome (5,191,608 bp) with a G+C content of 58.78% and harboring 4,473 protein-coding genes. The assembled sequence data will help elucidate potential metabolic pathways and mechanisms responsible for the hydrocarbon-degrading ability of M. aestuarii ST58-10T.

20.
Int J Syst Evol Microbiol ; 68(2): 651-656, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29303694

RESUMO

A Gram-stain-negative, aerobic, motile, flagellated rod-shaped bacterium, designated ST58-10T, was isolated from an estuarine sediment in the Republic of Korea. The strain was able to degrade benzene. Growth of strain ST58-10T was observed at 4-35 °C (optimum, 20-25 °C), pH 5-9 (optimum, pH 7-8) and 1-8 % NaCl (optimum, 3 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain ST58-10T formed a phyletic lineage within the genus Marinobacterium of the family Oceanospirillaceae. Strain ST58-10T was most closely related to Marinobacterium profundum PAMC 27536T (99.6 %) and Marinobacterium rhizophilum CL-YJ9T (98.3 %), and to other members of the genus Marinobacterium(94.5-91.5 %). However, the mean value estimated by using the Genome-to-Genome Distance Calculator was 50.6±7.4 % with M. profundum PAMC 27536T and 30.9±2.8 with M. rhizophilum CL-YJ9T, respectively. An average nucleotide identity value was 89.0 % with M. profundum PAMC 27536T and 85.6 % with M. rhizophilum CL-YJ9T, respectively. The major fatty acids of strain ST58-10T were summed feature 3 (comprising C16 : 1ω7c/C16 : 1ω6c), summed feature 8 (comprising C18 : 1 ω7c/C18 : 1ω6c), C16 : 0 and C10 : 0 3-OH, and contained ubiquinone (Q-8) as the sole isoprenoid quinone. Phosphatidylethanolamine, phosphatidylglycerol, three unidentified aminolipids, an unidentified glycolipid and an unidentified lipid were detected as polar lipids. The DNA G+C content of strain ST58-10T was 58.78 mol%. On the basis of the phenotypic, chemotaxonomic and molecular properties, strain ST58-10T represents a novel species of the genus Marinobacterium, for which the name Marinobacterium aestuarii sp. nov. is proposed. The type strain is ST58-10T (=KCTC 52193T=NBRC 112103T).


Assuntos
Estuários , Sedimentos Geológicos/microbiologia , Oceanospirillaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Benzeno , DNA Bacteriano/genética , Ácidos Graxos/química , Oceanospirillaceae/genética , Oceanospirillaceae/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...