Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(756): eadk4802, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018365

RESUMO

Snakebites affect about 1.8 million people annually. The current standard of care involves antibody-based antivenoms, which can be difficult to access and are generally not effective against local tissue injury, the primary cause of morbidity. Here, we used a pooled whole-genome CRISPR knockout screen to define human genes that, when targeted, modify cell responses to spitting cobra venoms. A large portion of modifying genes that conferred resistance to venom cytotoxicity was found to control proteoglycan biosynthesis, including EXT1, B4GALT7, EXT2, EXTL3, XYLT2, NDST1, and SLC35B2, which we validated independently. This finding suggested heparinoids as possible inhibitors. Heparinoids prevented venom cytotoxicity through binding to three-finger cytotoxins, and the US Food and Drug Administration-approved heparinoid tinzaparin was found to reduce tissue damage in mice when given via a medically relevant route and dose. Overall, our systematic molecular dissection of cobra venom cytotoxicity provides insight into how we can better treat cobra snakebite envenoming.


Assuntos
Venenos Elapídicos , Mordeduras de Serpentes , Animais , Humanos , Mordeduras de Serpentes/tratamento farmacológico , Camundongos , Antídotos/farmacologia
2.
Nat Commun ; 14(1): 2442, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117223

RESUMO

Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons.


Assuntos
Toxinas Biológicas , Urtica dioica , Austrália , Dor , Peptídeos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
3.
PLoS Biol ; 21(2): e3001967, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757924

RESUMO

Although ACE2 is the primary receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, a systematic assessment of host factors that regulate binding to SARS-CoV-2 spike protein has not been described. Here, we use whole-genome CRISPR activation to identify host factors controlling cellular interactions with SARS-CoV-2. Our top hit was a TLR-related cell surface receptor called leucine-rich repeat-containing protein 15 (LRRC15). LRRC15 expression was sufficient to promote SARS-CoV-2 spike binding where they form a cell surface complex. LRRC15 mRNA is expressed in human collagen-producing lung myofibroblasts and LRRC15 protein is induced in severe Coronavirus Disease 2019 (COVID-19) infection where it can be found lining the airways. Mechanistically, LRRC15 does not itself support SARS-CoV-2 infection, but fibroblasts expressing LRRC15 can suppress both pseudotyped and authentic SARS-CoV-2 infection in trans. Moreover, LRRC15 expression in fibroblasts suppresses collagen production and promotes expression of IFIT, OAS, and MX-family antiviral factors. Overall, LRRC15 is a novel SARS-CoV-2 spike-binding receptor that can help control viral load and regulate antiviral and antifibrotic transcriptional programs in the context of COVID-19 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/genética , Antivirais/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Fibroblastos/metabolismo , Ligação Proteica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
4.
Nucleic Acids Res ; 49(11): 6100-6113, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34107015

RESUMO

Pulmonary diseases offer many targets for oligonucleotide therapeutics. However, effective delivery of oligonucleotides to the lung is challenging. For example, splicing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) affect a significant cohort of Cystic Fibrosis (CF) patients. These individuals could potentially benefit from treatment with splice switching oligonucleotides (SSOs) that can modulate splicing of CFTR and restore its activity. However, previous studies in cell culture used oligonucleotide transfection methods that cannot be safely translated in vivo. In this report, we demonstrate effective correction of a splicing mutation in the lung of a mouse model using SSOs. Moreover, we also demonstrate effective correction of a CFTR splicing mutation in a pre-clinical CF patient-derived cell model. We utilized a highly effective delivery strategy for oligonucleotides by combining peptide-morpholino (PPMO) SSOs with small molecules termed OECs. PPMOs distribute broadly into the lung and other tissues while OECs potentiate the effects of oligonucleotides by releasing them from endosomal entrapment. The combined PPMO plus OEC approach proved to be effective both in CF patient cells and in vivo in the mouse lung and thus may offer a path to the development of novel therapeutics for splicing mutations in CF and other lung diseases.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Pulmão/metabolismo , Morfolinos/administração & dosagem , Splicing de RNA , Animais , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Camundongos , Mutação , Peptídeos , Mucosa Respiratória/metabolismo , Transfecção
5.
JCI Insight ; 4(6)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30721150

RESUMO

Airway mucin secretion is necessary for ciliary clearance of inhaled particles and pathogens but can be detrimental in pathologies such as asthma and cystic fibrosis. Exocytosis in mammals requires a Munc18 scaffolding protein, and airway secretory cells express all 3 Munc18 isoforms. Using conditional airway epithelial cell-deletant mice, we found that Munc18a has the major role in baseline mucin secretion, Munc18b has the major role in stimulated mucin secretion, and Munc18c does not function in mucin secretion. In an allergic asthma model, Munc18b deletion reduced airway mucus occlusion and airflow resistance. In a cystic fibrosis model, Munc18b deletion reduced airway mucus occlusion and emphysema. Munc18b deficiency in the airway epithelium did not result in any abnormalities of lung structure, particle clearance, inflammation, or bacterial infection. Our results show that regulated secretion in a polarized epithelial cell may involve more than one exocytic machine at the apical plasma membrane and that the protective roles of mucin secretion can be preserved while therapeutically targeting its pathologic roles.


Assuntos
Asma/metabolismo , Mucinas/metabolismo , Proteínas Munc18/metabolismo , Mucosa Respiratória/metabolismo , Animais , Fibrose Cística/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Exocitose , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Munc18/genética , Mucosa Respiratória/patologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...