Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(16): A1287-A1296, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510582

RESUMO

A 2,3,4,6-tetrafluoro-7,7,8,8,-tetracyanoquinodimethane (F4-TCNQ) doping interlayer was developed to improve charge imbalance and the efficiency in indium phosphide (InP)-based quantum dot light-emitting diodes (QLEDs). The doping layer was coated between a hole injecting layer (HIL) and a hole transport layer (HTL) and successfully diffused with thermal annealing. This doping reduces the hole injection barrier and improves the charge balance of InP-based QLEDs, resulting in enhancement of an external quantum efficiency (EQE) of 3.78% (up from 1.6%) and a power efficiency of 6.41 lm/W (up from 2.77 lm/W). This work shows that F4-TCNQ interlayer doping into both HIL and HTL facilitates hole injection and can provide an efficient solution of improving charge balance in QLED for the device efficiency.

2.
Opt Express ; 27(14): 20037-20046, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503755

RESUMO

Quantum-dot (QD) ligands were modified and hydrosilylated with a siloxane matrix to improve the quantum efficiency and stability of the QDs. Conventional oleic acid (OA) ligands were exchanged with vinyl ligands without any reduction in the quantum yield. After ligand modification, hydrosilylation was induced between the vinyl ligands on the QDs (vinyl QDs) and a siloxane matrix, resulting in a uniform QD dispersion in the matrix. The hydrosilylated QDs in siloxane showed 23% higher photoluminescence intensity than OA QDs blended in siloxane after storage for 30 days at 85 °C under 85% relative humidity. The QDs also showed 22.3% higher UV/thermal stability than OA QDs in siloxane after 29 h under a high LED photon flux. This study demonstrates that the chemical reaction of QD ligands with polymer matrices can improve the QDs' dispersion and stability.

3.
RSC Adv ; 9(21): 11634-11640, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35517031

RESUMO

We developed a 1.0 nm thick aluminum oxide (Al2O3) interlayer as an electron blocking layer to reduce leakage current and suppress exciton quenching induced by charge imbalance in inverted quantum dot light emitting diodes (QLEDs). The Al2O3 interlayer was deposited by an atomic layer deposition (ALD) process that allows precise thickness control. The Al2O3 interlayer lowers the mobility of electrons and reduces Auger recombination which causes the degradation of device performance. A maximum current efficiency of 51.2 cd A-1 and an external quantum efficiency (EQE) of 12.2% were achieved in the inverted QLEDs with the Al2O3 interlayer. The Al2O3 interlayer increased device efficiency by 1.1 times, increased device lifetime by 6 times, and contributed to reducing efficiency roll-off from 38.6% to 19.6% at a current density up to 150 mA cm-2. The improvement of device performance by the Al2O3 interlayer is attributed to the reduction of electron injection and exciton quenching induced by zinc oxide (ZnO) nanoparticles (NPs). This work demonstrates that the Al2O3 interlayer is a promising solution for charge control in QLEDs and that the ALD process is a reliable approach for atomic scale thickness control for QLEDs.

4.
Nanoscale Adv ; 1(2): 602-612, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132242

RESUMO

Artificial white-light production from primary red, green, and blue (RGB) colours is in high demand in the lighting, information technology, and wearable display industries, and it requires a simple device structure and efficient templates with stable luminophores. To realize efficient and stable optoelectronic devices, relevant materials and device structures need to be identified. Therefore, we report the construction of a simple hybrid white-light optoelectronic device with a single excitation source with efficient RGB colours on a stable optical platform. Emission wavelength-tunable R, G, and B quantum dots (QDs) with specific ligands and cetyltrimethylammonium chloride (CTMA)-modified DNA (CDNA) are prepared for the fabrication of QDs embedded in CDNA thin films with mixed and orthogonally stacked configurations. Fourier transform infrared, photoluminescence quantum yield (PLQY), ultraviolet (UV)-vis absorbance, photoluminescence, and electroluminescence (excited by blue and UV LEDs) spectra of the QDs embedded in CDNA thin films are analyzed to investigate their ligand attachment, luminescence efficiency, optical excitation, spectral emission, and hybrid white-light properties. In addition, the dispersion and photostability of QDs in the CDNA matrix were analyzed. The colour rendering index (CRI) values and colour gamut of the QDs embedded in CDNA thin films are studied for evaluating the light quality. The results show that the ligands on the QDs enhance PLQY up to 95 and 25% in liquid and solid phases, respectively. The optical properties of the QDs in the CDNA thin films are not significantly affected by phase changes, which implies the effective hosting of QDs within CDNA. The CRI values of the mixed and stacked configuration-dependent QDs embedded in CDNA thin films are 21 and 80%, respectively, which suggest the relatively stronger self-absorption of R QDs in the mixed configuration than in the stacked configuration. In addition, CRI values and colour gamut are affected by different R, G, and B QD concentrations in CDNA. These findings are important for solid-state lighting, information display systems, flexible displays, and wearable displays.

5.
Materials (Basel) ; 11(4)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614800

RESUMO

Here, we fabricate poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-co-HFP) by electrospinning for a gel polymer electrolyte (GPE) for use in flexible Li-ion batteries (LIBs). As a solvent, we use N-methyl-2-pyrrolidone (NMP), which helps produce the cross-linked morphology of PVDF-co-HFP separator, owing to its low volatility. The cross-linked PVDF-co-HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP) separator. Moreover, the PVDF-co-HFP separator shows an ionic conductivity of 2.3 × 10-3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF-co-HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF-co-HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF-co-HFP GPE with a flexible organic light emitting diode (OLED), demonstrating a fully flexible unit of LIB and OLED.

6.
J Soc Inf Disp ; 25(3): 177-184, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28867926

RESUMO

While OLEDs have struggled to find a niche lighting application that can fully take advantage of their unique form factors as thin, flexible, lightweight and uniformly large-area luminaire, photomedical researchers have been in search of low-cost, effective illumination devices with such form factors that could facilitate widespread clinical applications of photodynamic therapy (PDT) or photobiomodulation (PBM). Although existing OLEDs with either fluorescent or phosphorescent emitters cannot achieve the required high power density at the right wavelength windows for photomedicine, the recently developed ultrabright and efficient deep red quantum dot light emitting devices (QLEDs) can nicely fit into this niche. Here, we report for the first time the in-vitro study to demonstrate that this QLED-based photomedical approach could increase cell metabolism over control systems for PBM and kill cancerous cells efficiently for PDT. The perspective of developing wavelength-specific, flexible QLEDs for two critical photomedical fields (wound repair and cancer treatment) will be presented with their potential impacts summarized. The work promises to generate flexible QLED-based light sources that could enable the widespread use and clinical acceptance of photomedical strategies including PDT and PBM.

7.
Sci Rep ; 7(1): 11567, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912561

RESUMO

To be useful in optoelectronic devices and sensors, a platform comprising stable fluorescence materials is essential. Here we constructed quantum dots (QDs) embedded DNA thin films which aims for stable fluorescence through the stabilization of QDs in the high aspect ratio salmon DNA (SDNA) matrix. Also for maximum luminescence, different concentration and configurations of core- and core/alloy/shell-type QDs were embedded within SDNA. The QD-SDNA thin films were constructed by drop-casting and investigated their optoelectronic properties. The infrared, UV-visible and photoluminescence (PL) spectroscopies confirm the embedment of QDs in the SDNA matrix. Absolute PL quantum yield of the QD-SDNA thin film shows the ~70% boost due to SDNA matrix compared to QDs alone in aqueous phase. The linear increase of PL photon counts from few to order of 5 while increasing [QD] reveals the non-aggregation of QDs within SDNA matrix. These systematic studies on the QD structure, absorbance, and concentration- and thickness-dependent optoelectronic characteristics demonstrate the novel properties of the QD-SDNA thin film. Consequently, the SDNA thin films were suggested to utilize for the generalised optical environments, which has the potential as a matrix for light conversion and harvesting nano-bio material as well as for super resolution bioimaging- and biophotonics-based sensors.


Assuntos
DNA/química , Pontos Quânticos , Medições Luminescentes/métodos , Análise Espectral/métodos
8.
ACS Nano ; 11(2): 1982-1990, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28187259

RESUMO

We report on an all-solution-processed fabrication of highly efficient green quantum dot-light-emitting diodes (QLEDs) with an inverted architecture, where an interfacial polymeric surface modifier of polyethylenimine ethoxylated (PEIE) is inserted between a quantum dot (QD) emitting layer (EML) and a hole transport layer (HTL), and a MoOx hole injection layer is solution deposited on top of the HTL. Among the inverted QLEDs with varied PEIE thicknesses, the device with an optimal PEIE thickness of 15.5 nm shows record maximum efficiency values of 65.3 cd/A in current efficiency and 15.6% in external quantum efficiency (EQE). All-solution-processed fabrication of inverted QLED is further implemented on a flexible platform by developing a high-performing transparent conducting composite film of ZnO nanoparticles-overcoated on Ag nanowires. The resulting flexible inverted device possesses 35.1 cd/A in current efficiency and 8.4% in EQE, which are also the highest efficiency values ever reported in flexible QLEDs.

9.
ACS Nano ; 9(6): 5818-24, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25988910

RESUMO

Preventing reactive gas species such as oxygen or water is important to ensure the stability and durability of organic electronics. Although inorganic materials have been predominantly employed as the protective layers, their poor mechanical property has hindered the practical application to flexible electronics. The densely packed hexagonal lattice of carbon atoms in graphene does not allow the transmission of small gas molecules. In addition, its outstanding mechanical flexibility and optical transmittance are expected to be useful to overcome the current mechanical limit of the inorganic materials. In this paper, we reported the measurement of the water vapor transmission rate (WVTR) through the 6-layer 10 × 10 cm(2) large-area graphene films synthesized by chemical vapor deposition (CVD). The WVTR was measured to be as low as 10(-4) g/m(2)·day initially, and stabilized at ∼0.48 g/m(2)·day, which corresponds to 7 times reduction in WVTR compared to bare polymer substrates. We also showed that the graphene-passivated organic field-effect transistors (OFETs) exhibited excellent environmental stability as well as a prolonged lifetime even after 500 bending cycles with strain of 2.3%. We expect that our results would be a good reference showing the graphene's potential as gas barriers for organic electronics.

10.
Nanotechnology ; 26(13): 135705, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25760426

RESUMO

This study proposes a novel method of improving the electrical conductivity of silver nanowires (NWs)-networked films for the application of transparent conductive electrodes. We applied Cs-added TiO2 (TiO2:Cs) nanoparticles onto Ag NWs, which caused the NWs to be neatly welded together through local melting at the junctions, according to our transmission and scanning electron microscopy analyses. Systematic comparison of the sheet resistance of the samples reveals that these welded NWs yielded a significant improvement in conductivity. OLED devices, fabricated by using the NW film planarized via embedding the wires into PMMA, demonstrated device performance was comparable with the reference sample with indium tin oxide electrode.

11.
Phys Chem Chem Phys ; 17(4): 2416-20, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25493299

RESUMO

The fabrication of interlayer dielectrics (ILDs) in flexible organic light-emitting diodes (OLEDs) not only requires flexible materials with a low dielectric constant, but also ones that possess the electrical, thermal, chemical, and mechanical properties required for optimal device performance. Porous polymer-silica hybrid materials were prepared to satisfy these requirements. Hollow SiO2 spheres were synthesized using atomic layer deposition (ALD) and a thermal calcination process. The hybrid film, which consists of hollow SiO2 spheres and polyimide, shows a low dielectric constant of 1.98 and excellent thermal stability up to 500 °C. After the bending test for 50 000 cycles, the porous hybrid film exhibits no degradation in its dielectric constant or leakage current. These results indicate that the hybrid film made up of hollow SiO2 spheres and polyimide (PI) is useful as a flexible insulator with a low dielectric constant and high thermal stability for flexible OLEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...