Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 288: 112400, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823436

RESUMO

Over the past century, the decline in biodiversity due to climate change and habitat loss has become unprecedentedly serious. Multiple drivers, including climate change, land-use/cover change, and qualitative change in habitat need to be considered in an integrated approach, which has rarely been taken, to create an effective conservation strategy. The purpose of this study is to quantitatively evaluate and map the combined impacts of those multiple drivers on biodiversity in the Republic of Korea (ROK). To this end, biodiversity persistence (BP) was simulated by employing generalized dissimilarity modeling with estimates of habitat conditions. Habitat Condition Index was newly developed based on national survey datasets to represent the changes in habitat quality according to the land cover changes and forest management, especially after the ROK's National Reforestation Programme. The changes in habitat conditions were simulated for a period ranging from the 1960s to the 2010s; additionally, future (2050s) spatial scenarios were constructed. By focusing on the changes in forest habitat quality along with climate and land use, this study quantitatively and spatially analyzed the changes in BP over time and presented the effects of reforestation and forest management. The results revealed that continuous forest management had a positive impact on BP by offsetting the negative effects of past urbanization. Improvements in forest habitat quality also can effectively reduce the negative impacts of climate change. This quantitative analysis of successful forest restoration in Korea proved that economic development and urbanization could be in parallel with biodiversity enhancement. Nevertheless, current forest management practices were found to be insufficient in fully offsetting the decline in future BP caused by climate change. This indicates that there is a need for additional measures along with mitigation of climate change to maintain the current biodiversity level.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Mudança Climática , Ecossistema , Florestas , República da Coreia
2.
Korean J Anesthesiol ; 60(3): 192-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21490821

RESUMO

BACKGROUND: Pneumoperitoneum with an intra-abdominal pressure (IAP) of 14 mmHg is known to decrease renal function. Robotic-assisted radical prostatectomy (RARP) requires an IAP of more than 15 mmHg for operation. Therefore, we retrospectively investigated whether patients who underwent RARP experienced renal insufficiency during the postoperative period (at postoperative days 7 and 30). METHODS: One hundred patients who underwent RARP were enrolled in this study. Preoperative serum blood urea nitrogen (BUN) and serum creatinine (Cr) levels were measured. Creatinine clearance (CrCl) was calculated using the Cockcroft and Gault formula. CrCl was calculated at 1 day before surgery (baseline), 2 hr postoperatively, and at 1, 3, 7, and 30 days postoperatively (POD 1, POD 3, POP 7, and POD 30). Patients were assigned to abnormal CrCl (n = 52) or normal CrCl groups (n = 48) on the basis of these measurements. RESULTS: Significant inter-group differences in BUN, Cr, and CrCl were observed at all postoperative time points. BUN and Cr decreased significantly at postoperative 2 hr and POD 1, 3, and 7 versus baseline in both groups, whereas CrCl increased significantly at postoperative 2 hr and POD 1, 3, and 7 versus baseline in both groups. However, BUN, Cr, and CrCl were similar at POD 30 and preoperatively in the two groups. CONCLUSIONS: RAPR, which requires an IAP of 15-20 mmHg for more than 4 hr, does not induce renal dysfunction during the postoperative period, and even in those patients with an abnormal CrCl.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...