Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134382, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703675

RESUMO

The photocatalytic efficiency for removing volatile organic compounds (VOCs) is significantly influenced by operational parameters like humidity and flow velocity, exhibiting notable and inconsistent fluctuations in both lab-scale and large-scale demonstrations. In this study, operando spectroscopy and isotope analysis were employed to investigate the correlation between humidity levels and degradation of gaseous acetaldehyde using TiO2 photocatalysts, aiming to demonstrate the scaling-up of photocatalytic air purifier. It was observed that rate constants for the mineralization of acetaldehyde rapidly decreased by 30% as relative humidity increased from 25% to 80% in the flow system (with an air velocity, v = 0.78 m/s). However, batch system showed smaller change with only a 10% reduction of the rate constant. Humidity fluctuations were more pronounced under high-speed conditions and were amplified in air purifier (v = 3.8 m/s). Time-resolved operando spectroscopy using an 13C isotope of acetaldehyde revealed that humidity's distinct role in dark adsorption and photocatalytic reactions. Water was found to inhibit the formation of crotonaldehyde during aldol condensation reaction in dark condition. Moreover, water suppressed photocatalytic mineralization by inhibiting acetate oxidation to formate. These findings provide valuable insights for improving realistic air purification processes, underscoring the importance of identifying key intermediates and controlling humidity to enhance the selectivity of gaseous pollutant oxidation reactions.

2.
Environ Sci Technol ; 56(2): 1341-1351, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34964609

RESUMO

We introduce a new graphene oxide (GO)-based membrane architecture that hosts cobalt catalysts within its nanoscale pore walls. Such an architecture would not be possible with catalysts in nanoscale, the current benchmark, since they would block the pores or alter the pore structure. Therefore, we developed a new synthesis procedure to load cobalt in an atomically dispersed fashion, the theoretical limit in material downsizing. The use of vitamin C as a mild reducing agent was critical to load Co as dispersed atoms (Co1), preserving the well-stacked 2D structure of GO layers. With the addition of peroxymonosulfate (PMS), the Co1-GO membrane efficiently degraded 1,4-dioxane, a small, neutral pollutant that passes through nanopores in single-pass treatment. The observed 1,4-dioxane degradation kinetics were much faster (>640 times) than the kinetics in suspension and the highest among reported persulfate-based 1,4-dioxane destruction. The capability of the membrane to reject large organic molecules alleviated their effects on radical scavenging. Furthermore, the advanced oxidation also mitigated membrane fouling. The findings of this study present a critical advance toward developing catalytic membranes with which two distinctive and complementary processes, membrane filtration and advanced oxidation, can be combined into a single-step treatment.


Assuntos
Poluentes Ambientais , Grafite , Catálise , Cobalto/química
3.
Nat Commun ; 12(1): 6259, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716347

RESUMO

Photocatalytic air purification is widely regarded as a promising technology, but it calls for more efficient photocatalytic materials and systems. Here we report a strategy to introduce an in-situ water (self-wetting) layer on WO3 by coating hygroscopic periodic acid (PA) to dramatically enhance the photocatalytic removal of hydrophilic volatile organic compounds (VOCs) in air. In ambient air, water vapor is condensed on WO3 to make a unique tri-phasic (air/water/WO3) system. The in-situ formed water layer selectively concentrates hydrophilic VOCs. PA plays the multiple roles as a water-layer inducer, a surface-complexing ligand enhancing visible light absorption, and a strong electron acceptor. Under visible light, the photogenerated electrons are rapidly scavenged by periodate to produce more •OH. PA/WO3 exhibits excellent photocatalytic activity for acetaldehyde degradation with an apparent quantum efficiency of 64.3% at 460 nm, which is the highest value ever reported. Other hydrophilic VOCs like formaldehyde that are readily dissolved into the in-situ water layer on WO3 are also rapidly degraded, whereas hydrophobic VOCs remain intact during photocatalysis due to the "water barrier effect". PA/WO3 successfully demonstrated an excellent capacity for degrading hydrophilic VOCs selectively in wide-range concentrations (0.5-700 ppmv).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...