Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674985

RESUMO

This study investigated the synergistic effect of carbon black/multi-wall carbon nanotube (CB/MWCNT) hybrid fillers on the physical and mechanical properties of Ethylene propylene diene rubber (EPDM) composites after exposure to high-pressure hydrogen gas. The EPDM/CB/CNT hybrid composites were prepared by using the EPDM/MWCNT master batch (MB) with 10 phr CNTs to enhance the dispersion of CNTs in hybrid composites. The investigation included a detailed analysis of cure characteristics, crosslink density, Payne effect, mechanical properties, and hydrogen permeation properties. After exposure to 96.3 MPa hydrogen gas, the hydrogen uptake and the change in volume and mechanical properties of the composites were assessed. We found that as the MWCNT volume fraction in fillers increased, the crosslink density, filler-filler interaction, and modulus of hybrid composites increased. The hydrogen uptake and the solubility of the composites decreased with an increasing MWCNT volume fraction in fillers. Moreover, after exposure to hydrogen gas, the change in volume and mechanical properties exhibited a diminishing trend with a higher MWCNT volume fraction. We conclude that the hybridization of CB and CNTs formed strong filler-filler networks in hybrid composites, consequently reinforcing the EPDM composites and enhancing the barrier properties of hydrogen gas.

2.
Polymers (Basel) ; 14(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35406341

RESUMO

We developed a method for characterizing permeation parameters in hydrogen sorption and desorption processes in polymers using the volumetric measurement technique. The technique was utilized for three polymers: nitrile butadiene rubber (NBR), ethylene propylene diene monomer (EPDM), and fluoroelastomer (FKM). The total uptake (C∞), total desorbed content (C0), diffusivity in sorption (Ds), and diffusivity in desorption (Dd) of hydrogen in the polymers were determined versus the sample diameter used in both processes. For all the polymers, the diameter dependence was not detected for C∞ and C0. The average C∞ and C0 at 5.75 MPa were 316 wt∙ppm and 291 wt∙ppm for NBR, 270 wt∙ppm and 279 wt∙ppm for EPDM, and 102 wt∙ppm and 93 wt∙ppm for FKM. The coincidence of C∞ and C0 in the sorption and desorption process indicated physisorption upon introducing hydrogen molecules into the polymers. The larger Dd in the desorption process than Ds could be attributed to an increased amorphous phase and volume swelling after decompression. The equilibrium time to reach the saturation of the hydrogen content in both processes was experimentally confirmed as proportional to the squared radius and consistent with the COMSOL simulation. This method could be used to predict the equilibrium time of the sorption time, depending on the radius of the polymers without any measurement.

3.
Sci Rep ; 11(1): 5391, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686139

RESUMO

The Kondo effect has been a topic of intense study because of its significant contribution to the development of theories and understanding of strongly correlated electron systems. In this work, we show that the Kondo effect is at work in La1-xPrxNiO3-δ (0 ≤ x ≤ 0.6) thin films. At low temperatures, the local magnetic moments of the 3d eg electrons in Ni2+, which form because of oxygen vacancies, interact strongly with itinerant electrons, giving rise to an upturn in resistivity with x ≥ 0.2. Observation of negative magnetoresistance, described by the Khosla and Fisher model, further supports the Kondo picture. This case represents a rare example of the Kondo effect, where Ni2+ acts as an impurity in the background of Ni3+. We suggest that when Ni2+ does not participate in the regular lattice, it provides the local magnetic moments needed to scatter the conduction electrons in the Kondo effect. These results offer insights into emergent transport behaviors in metallic nickelates with mixed Ni3+ and Ni2+ ions, as well as structural disorder.

4.
Materials (Basel) ; 13(9)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344793

RESUMO

HfO2 was deposited at 80-250 °C by plasma-enhanced atomic layer deposition (PEALD), and properties were compared with those obtained by using thermal atomic layer deposition (thermal ALD). The ALD window, i.e., the region where the growth per cycle (GPC) is constant, shifted from high temperatures (150-200 °C) to lower temperatures (80-150 °C) in PEALD. HfO2 deposited at 80 °C by PEALD showed higher density (8.1 g/cm3) than those deposited by thermal ALD (5.3 g/cm3) and a smooth surface (RMS Roughness: 0.2 nm). HfO2 deposited at a low temperature by PEALD showed decreased contaminants compared to thermal ALD deposited HfO2. Values of refractive indices and optical band gap of HfO2 deposited at 80 °C by PEALD (1.9, 5.6 eV) were higher than those obtained by using thermal ALD (1.7, 5.1 eV). Transparency of HfO2 deposited at 80 °C by PEALD on polyethylene terephthalate (PET) was high (> 84%). PET deposited above 80 °C was unable to withstand heat and showed deformation. HfO2 deposited at 80 °C by PEALD showed decreased leakage current from 1.4 × 10-2 to 2.5 × 10-5 A/cm2 and increased capacitance of approximately 21% compared to HfO2 using thermal ALD. Consequently, HfO2 deposited at a low temperature by PEALD showed improved properties compared to HfO2 deposited by thermal ALD.

5.
J Nanosci Nanotechnol ; 20(1): 442-446, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383191

RESUMO

Charge recombination at the photoelectrode/dye/electrolyte interface decreases the energy conversion efficiency of dye-sensitized solar cells (DSSCs). To suppress charge recombination at this interface in DSSCs, an aluminum oxide (Al2O3) film can be deposited as an insulating metal oxide layer on the photoelectrode to form an energy barrier. However, the Al2O3 energy barrier can also disturb the transport of injected electrons to the working electrode through the titanium dioxide (TiO2) photoelectrode. In this study, Al2O3 was selectively deposited as an insulating metal oxide layer on the upper side of a TiO2 photoelectrode, which has a high probability of charge recombination, using plasma-enhanced atomic layer deposition. Deposition of the Al2O3 layer by this method helped to minimize the transport rate deterioration of injected electrons. This resulted in an increase of the efficiency of DSSCs containing the Al2O3 layer by 42.3% compared with that of a reference DSSC without the insulating metal oxide layer.

6.
Micromachines (Basel) ; 9(10)2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30424423

RESUMO

Mastering non-evaporable getter (NEG) thin films by elucidating their activation mechanisms and predicting their sorption performances will contribute to facilitating their integration into micro-electro-mechanical systems (MEMS). For this aim, thin film based getters structured in single and multi-metallic layered configurations deposited on silicon substrates such as Ti/Si, Ti/Ru/Si, and Zr/Ti/Ru/Si were investigated. Multilayered NEGs with an inserted Ru seed sub-layer exhibited a lower temperature in priming the activation process and a higher sorption performance compared to the unseeded single Ti/Si NEG. To reveal the gettering processes and mechanisms in the investigated getter structures, thermal activation effect on the getter surface chemical state change was analyzed with in-situ temperature XPS measurements, getter sorption behavior was measured by static pressure method, and getter dynamic sorption performance characteristics was measured by standard conductance (ASTM F798⁻97) method. The correlation between these measurements allowed elucidating residual gas trapping mechanism and prediction of sorption efficiency based on the getter surface poisoning. The gettering properties were found to be directly dependent on the different changes of the getter surface chemical state generated by the activation process. Thus, it was demonstrated that the improved sorption properties, obtained with Ru sub-layer based multi-layered NEGs, were related to a gettering process mechanism controlled simultaneously by gas adsorption and diffusion effects, contrarily to the single layer Ti/Si NEG structure in which the gettering behavior was controlled sequentially by surface gas adsorption until reaching saturation followed then by bulk diffusion controlled gas sorption process.

7.
Materials (Basel) ; 11(3)2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510594

RESUMO

The effect of growth temperature on the atomic layer deposition of zirconium oxide (ZrO2) dielectric thin films that were fabricated using a CpZr[N(CH3)2]3/C7H8 cocktail precursor with ozone was investigated. The chemical, structural, and electrical properties of ZrO2 films grown at temperatures from 250 to 350 °C were characterized. Stoichiometric ZrO2 films formed at 250-350 °C with an atomic ratio of O to Zr of 1.8-1.9 and a low content of carbon impurities. The film formed at 300 °C was predominantly the tetragonal crystalline phase, whereas that formed at 350 °C was a mixture of tetragonal and monoclinic phases. Electrical properties, such as capacitance, leakage current, and voltage linearity of TiN/ZrO2/TiN capacitors fabricated using the thin ZrO2 films grown at different temperatures were compared capacitor applications. The ZrO2 film grown at 300 °C exhibited low impurity content, predominantly tetragonal crystalline structure, a high dielectric permittivity of 38.3, a low leakage current of below 10-7 A/cm² at 2 V, and low-voltage linearity.

8.
ACS Nano ; 6(1): 241-8, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22148318

RESUMO

A single-molecule ferritin picking-up process was realized with the use of AFM, which was enhanced by employing controlled dendron surface chemistry. The approach enabled the placement of a single ferritin protein molecule at the very end of an AFM tip. When used for magnetic force microscopy (MFM) imaging, the tips were able to detect magnetic interactions of approximately 10 nm sized magnetic nanoparticles. The single ferritin tip also showed the characteristics of a "multifunctional" MFM probe that can sense the magnetic force from magnetic materials as well as detect the biomolecular interaction force with DNAs on the surface. The multifunctional tip enabled us not only to investigate the specific molecular interaction but also to image the magnetic interaction between the probe and the substrate, in addition to allowing the common capability of topographic imaging. Because the protein engineering of ferritin and the supporting coordination and conjugation chemistry are well-established, we envisage that it would be straightforward to extend this approach to the development of various single magnetic particle MFM probes of different compositions and sizes.


Assuntos
Ferritinas/química , Nanopartículas de Magnetita/análise , Nanopartículas de Magnetita/química , Microscopia de Força Atômica/instrumentação , Técnicas de Sonda Molecular/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...