Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nutr Metab (Lond) ; 13: 88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27980597

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is caused by multiple factors including hepatic oxidative stress, lipotoxicity, and mitochondrial dysfunction. Obesity is among the risk factors for NAFLD alongside type 2 diabetes mellitus and hyperlipidemia. α- mangostin (α-MG) extracts from the pericarps of mangosteen (Garcinia mangostana Linn.) may regulate high fat diet-induced hepatic steatosis; however the underlying mechanisms remain unknown. The aim of this study was to investigate the regulatory effect of α-MG on high fat diet-induced hepatic steatosis and the underlying mechanisms related to mitochondrial functionality and apoptosis in vivo and in vitro. METHODS: Sprague Dawley (SD) rats were fed on either AIM 93-M control diet, a high-fat diet (HFD), or high-fat diet supplemented with 25 mg/day mangosteen pericarp extract (MGE) for 11 weeks. Thereafter, the following were determined: body weight change, plasma free fatty acids, liver triglyceride content, antioxidant enzymes (superoxide dismutase, SOD; glutathione, GSH; glutathione peroxidase, GPx; glutathione reductase GRd; catalase, CAT) and mitochondrial complex enzyme activities. In the in vitro study, primary liver cells were treated with 1 mM free fatty acid (FFA) (palmitate: oleate acid = 2:0.25) to induce steatosis. Thereafter, the effects of α-MG (10 µM, 20 µM, 30 µM) on total and mitochondria ROS (tROS, mitoROS), mitochondria bioenergetic functions, and mitochondrial pathway of apoptosis were examined in the FFA-treated primary liver cells. RESULTS: The MGE group showed significantly decreased plasma free fatty acids and hepatic triglycerides (TG) and thiorbarbituric acid reactive substances (TBARS) levels; increased activities of antioxidant enzymes (SOD, GSH, GPx, GRd, CAT); and enhanced NADH-cytochrome c reductase (NCCR) and succinate-cytochrome c reductase (SCCR) activities in the liver tissue compared with HFD group. In the in vitro study, α-MG significantly increased mitochondrial membrane potential, enhanced cellular oxygen consumption rate (OCR), decreased tROS (total ROS) and mitoROS (mitochondrial ROS) levels ; reduced Ca2+ and cytochrome c (cyt c) release from mitochondria, and reduced caspases 9 and 3 activities compared with control group. CONCLUSION: These findings demonstrate α-MG attenuated hepatic steatosis in high fat-diet fed rats potentially through enhanced cellular antioxidant capacity and improved mitochondrial functions as well as suppressed apoptosis of hepatocytes. The findings of study represent a novel nutritional approach on the use of α-MG in the prevention and management of NAFLD.

2.
Arthritis Rheum ; 65(6): 1530-40, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23529662

RESUMO

OBJECTIVE: Excessive glucocorticoid treatment increases the incidence of osteopenia and osteonecrosis. MicroRNAs (miRNAs) reportedly target messenger RNA expression and regulate osteoblastogenesis and skeletal development. We undertook this study to investigate whether miR-29a regulates glucocorticoid-mediated bone loss. METHODS: Rats were given methylprednisolone, lentivirus-mediated miR-29a precursor, or lentivirus-mediated miR-29a inhibitor. Dual x-ray absorptiometry, micro-computed tomography, material testing, and enzyme-linked immunosorbent assay were performed to quantify bone mass, microarchitecture, peak load, and serum Dkk-1 levels. Differential miRNA expression profiles were detected using polymerase chain reaction arrays. The abundance of signaling molecules was assessed using immunoblotting. RESULTS: Glucocorticoid treatment induced loss of bone mineral density and trabecular microstructure in association with reduced miR-29a expression. Treatment with miR-29a precursor attenuated the adverse effects of glucocorticoid on bone mass, trabecular bone volume fraction, and biomechanical load-bearing capacity of bone tissue. Gain of miR-29a function alleviated the detrimental effects of glucocorticoid treatment on mineral acquisition and ex vivo osteoblast differentiation, and also reduced osteoclast surface, ex vivo osteoclast differentiation, and RANKL expression in bone microenvironments. Knockdown of miR-29a accelerated osteoclast resorption, cortical bone porosity, bone fragility, and loss of ex vivo osteogenic differentiation capacity. MicroRNA-29a regulated the abundance of Wnt signaling components (Wnt-3a, glycogen synthase kinase 3ß, and ß-catenin), the Wnt inhibitor Dkk-1, Akt, and phosphorylated ERK, and the expression of the osteogenic factors RUNX-2 and insulin-like growth factor 1 in bone tissue. CONCLUSION: MicroRNA-29a signaling protected against glucocorticoid-induced disturbance of Wnt and Dkk-1 actions and improved osteoblast differentiation and mineral acquisition. Promotion of miR-29a signaling is an alternative strategy for alleviating glucocorticoid-induced bone deterioration.


Assuntos
Reabsorção Óssea/prevenção & controle , Osso e Ossos/metabolismo , Glucocorticoides/efeitos adversos , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Absorciometria de Fóton , Animais , Densidade Óssea/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , MicroRNAs/genética , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Reação em Cadeia da Polimerase , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...