Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687282

RESUMO

The cytochrome P450 (CYP450) gene family plays a critical role in plant growth and developmental processes, nutrition, and detoxification of xenobiotics in plants. In the present research, a comprehensive set of 105 OsCYP71 family genes was pinpointed within the genome of indica rice. These genes were categorized into twelve distinct subfamilies, where members within the same subgroup exhibited comparable gene structures and conserved motifs. In addition, 105 OsCYP71 genes were distributed across 11 chromosomes, and 36 pairs of OsCYP71 involved in gene duplication events. Within the promoter region of OsCYP71, there exists an extensive array of cis-elements that are associated with light responsiveness, hormonal regulation, and stress-related signaling. Further, transcriptome profiling revealed that a majority of the genes exhibited responsiveness to hormones and were activated across diverse tissues and developmental stages in rice. The OsCYP71P6 gene is involved in insect resistance, senescence, and yield-related traits in rice. Hence, understanding the association between OsCYP71P6 genetic variants and yield-related traits in rice varieties could provide novel insights for rice improvement. Through the utilization of linear regression models, a total of eight promoters were identified, and a specific gene variant (Ser33Leu) within OsCYP71P6 was found to be linked to spikelet fertility. Additionally, different alleles of the OsCYP71P6 gene identified through in/dels polymorphism in 131 rice varieties were validated for their allelic effects on yield-related traits. Furthermore, the single-plant yield, spikelet number, panicle length, panicle weight, and unfilled grain per panicle for the OsCYP71P6-1 promoter insertion variant were found to contribute 20.19%, 13.65%, 5.637%, 8.79%, and 36.86% more than the deletion variant, respectively. These findings establish a robust groundwork for delving deeper into the functions of OsCYP71-family genes across a range of biological processes. Moreover, these findings provide evidence that allelic variation in the promoter and amino acid substitution of Ser33Leu in the OsCYP71P6 gene could potentially impact traits related to rice yield. Therefore, the identified promoter variants in the OsCYP71P6 gene could be harnessed to amplify rice yields.

2.
Physiol Mol Biol Plants ; 29(5): 739-753, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37363422

RESUMO

This study aimed to optimize methods for identifying heat-tolerant and heat-susceptible cotton plants by examining the relationship between leaf physiology and cotton yield. Cotton accessions were exposed to elevated temperatures through staggered sowing and controlled growth conditions in a glasshouse. Based on their yield performance, leaf physiology, cell biochemistry, and pollen germination, the accessions were categorized as heat-tolerant, moderately tolerant, or susceptible. High temperatures had a significant impact on various leaf physiological and biochemical factors, such as cell injury, photosynthetic rate, stomatal conductance, transpiration rate, leaf temperature, chlorophyll fluorescence, and enzyme activities. The germination of flower pollen and seed cotton yield was also affected. The study demonstrated that there was a genetic variability for heat tolerance among the tested cotton accessions, as indicated by the interaction between accession and environment. Leaf gas exchange, cell biochemistry, pollen germination, and cotton yield were strongly associated with heat-sensitive accessions, but this association was negligible in tolerant accessions. Principal component analysis was used to classify the accessions based on their performance under heat stress conditions. The findings suggest that leaf physiological traits, cell biochemistry, pollen germination, and cotton yield can be effective indicators for selecting heat-tolerant cotton lines. Future research could explore additional genetic traits for improved selection and development of heat-tolerant accessions. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01322-8.

3.
Plant Sci ; 334: 111749, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244501

RESUMO

Proline-rich extensin-like receptor kinases (PERKs) play a crucial role in a wide range of biological processes in plants. In model plants like Arabidopsis, the PERK gene family has been well investigated. Conversely, no information available on the PERK gene family and their biological functions largely remained unknown in rice. This study analyzed the basic physicochemical properties, phylogeny, gene structure, cis-acting elements, Gene ontology (GO) annotation and protein-protein interaction of OsPERK gene family members using various bioinformatics tools based on the whole-genome data of O. sativa. Thus, in this work, 8 PERK genes in rice were identified, and their roles in plant development, growth, and response to various stresses were studied. A phylogenetic study revealed that OsPERKs are grouped into seven classes. Chromosomal mapping also displayed that 8 PERK genes were unevenly distributed on 12 chromosomes. Further, the prediction of subcellular localization indicated that OsPERKs were mainly located at the endomembrane system. Gene structure analysis of OsPERKs has shown a distinctive evolutionary path. In addition, synteny analysis exhibited the 40 orthologous gene pairs in Arabidopsis thaliana, Triticum aestivum, Hordeum vulgare and Medicago truncatula. Furthermore, Ka to Ks proportion shows that most OsPERK genes experienced resilient purifying selection during evolutionary processes. The OsPERK promoters contained several cis-acting regulatory, which are crucial for plant development processes, phytohormone signaling, stress, and defense response. Moreover, the expression pattern of OsPERK family members showed differential expression patterns in different tissues and various stress conditions. Taken together, these results provide clear messages for a better understanding the roles of OsPERK genes in various development stages, tissues, and multifactorial stress as well as enriched the related research of OsPERK family members in rice.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Genoma de Planta/genética , Filogenia , Estresse Fisiológico/genética , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Perfilação da Expressão Gênica/métodos
4.
Plants (Basel) ; 12(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36840211

RESUMO

Salt stress is a severe type of environmental stress. It adversely affects agricultural production worldwide. The overproduction of reactive oxygen species (ROS) is the most frequent phenomenon during salt stress. ROS are extremely reactive and, in high amounts, noxious, leading to destructive processes and causing cellular damage. However, at lower concentrations, ROS function as secondary messengers, playing a critical role as signaling molecules, ensuring regulation of growth and adjustment to multifactorial stresses. Plants contain several enzymatic and non-enzymatic antioxidants that can detoxify ROS. The production of ROS and their scavenging are important aspects of the plant's normal response to adverse conditions. Recently, this field has attracted immense attention from plant scientists; however, ROS-induced signaling pathways during salt stress remain largely unknown. In this review, we will discuss the critical role of different antioxidants in salt stress tolerance. We also summarize the recent advances on the detrimental effects of ROS, on the antioxidant machinery scavenging ROS under salt stress, and on the crosstalk between ROS and other various signaling molecules, including nitric oxide, hydrogen sulfide, calcium, and phytohormones. Moreover, the utilization of "-omic" approaches to improve the ROS-regulating antioxidant system during the adaptation process to salt stress is also described.

5.
Plants (Basel) ; 11(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36559588

RESUMO

Global warming is a serious threat to food security and severely affects plant growth, developmental processes, and, eventually, crop productivity. Respiratory metabolism plays a critical role in the adaptation of diverse stress in plants. Aconitase (ACO) is the main enzyme, which catalyzes the revocable isomerization of citrate to isocitrate in the Krebs cycle. The function of ACO gene family members has been extensively studied in model plants, for instance Arabidopsis. However, their role in plant developmental processes and various stress conditions largely remained unknown in other plant species. Thus, we identified 15 ACO genes in wheat to elucidate their function in plant developmental processes and different stress environments. The phylogenetic tree revealed that TaACO genes were classified into six groups. Further, gene structure analysis of TaACOs has shown a distinctive evolutionary path. Synteny analysis showed the 84 orthologous gene pairs in Brachypodium distachyon, Aegilops tauschii, Triticum dicoccoides, Oryza sativa, and Arabidopsis thaliana. Furthermore, Ka/Ks ratio revealed that most TaACO genes experienced strong purifying selection during evolution. Numerous cis-acting regulatory elements were detected in the TaACO promoters, which play a crucial role in plant development processes, phytohormone signaling, and are related to defense and stress. To understand the function of TaACO genes, the expression profiling of TaACO genes were investigated in different tissues, developmental stages, and stress conditions. The transcript per million values of TaACOs genes were retrieved from the Wheat Expression Browser Database. We noticed the differential expression of the TaACO genes in different tissues and various stress conditions. Moreover, gene ontology analysis has shown enrichment in the tricarboxylic acid metabolic process (GO:0072350), citrate metabolic process (GO:0006101), isocitrate metabolic process GO:0006102, carbohydrate metabolic (GO:0005975), and glyoxylate metabolic process (GO:0046487). Therefore, this study provided valuable insight into the ACO gene family in wheat and contributed to the further functional characterization of TaACO during different plant development processes and various stress conditions.

6.
Hortic Res ; 9: uhac119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928401

RESUMO

Lettuce is one of the economically important leaf vegetables and is cultivated mainly in temperate climate areas. Cultivar identification based on the distinctness, uniformity, and stability (DUS) test is a prerequisite for new cultivar registration. However, DUS testing based on morphological features is time-consuming, labor-intensive, and costly, and can also be influenced by environmental factors. Thus, molecular markers have also been used for the identification of genetic diversity as an effective, accurate, and stable method. Currently, genome-wide single nucleotide polymorphisms (SNPs) using next-generation sequencing technology are commonly applied in genetic research on diverse plant species. This study aimed to establish an effective and high-throughput cultivar identification system for lettuce using core sets of SNP markers developed by genotyping by sequencing (GBS). GBS identified 17 877 high-quality SNPs for 90 commercial lettuce cultivars. Genetic differentiation analyses based on the selected SNPs classified the lettuce cultivars into three main groups. Core sets of 192, 96, 48, and 24 markers were further selected and validated using the Fluidigm platform. Phylogenetic analyses based on all core sets of SNPs successfully discriminated individual cultivars that have been currently recognized. These core sets of SNP markers will support the construction of a DNA database of lettuce that can be useful for cultivar identification and purity testing, as well as DUS testing in the plant variety protection system. Additionally, this work will facilitate genetic research to improve breeding in lettuce.

7.
Antioxidants (Basel) ; 11(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35326102

RESUMO

The world has faced the challenges of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) for the last two years, first diagnosed at the end of 2019 in Wuhan and widely distributed worldwide. As a result, the WHO has proclaimed the illness brought on by this virus to be a global pandemic. To combat COVID-19, researcher communities continuously develop and implement rapid diagnoses, safe and effective vaccinations and other alternative therapeutic procedures. However, synthetic drug-related side effects and high costs have piqued scientists' interest in natural product-based therapies and medicines. In this regard, antiviral substances derived from natural resources and some medicines have seen a boom in popularity. For instance, algae are a rich source of compounds such as lectins and sulfated polysaccharides, which have potent antiviral and immunity-boosting properties. Moreover, Algae-derived compounds or metabolites can be used as antibodies and vaccine raw materials against COVID-19. Furthermore, some algal species can boost immunity, reduce viral activity in humans and be recommended for usage as a COVID-19 preventative measure. However, this field of study is still in its early stages of development. Therefore, this review addresses critical characteristics of algal metabolites, their antioxidant potential and therapeutic potential in COVID-19.

8.
Plants (Basel) ; 11(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214830

RESUMO

Proline-rich extensin-like receptor kinases (PERKs) are a class of receptor kinases implicated in multiple cellular processes in plants. However, there is a lack of information on the PERK gene family in wheat. Therefore, we identified 37 PERK genes in wheat to understand their role in various developmental processes and stress conditions. Phylogenetic analysis of PERK genes from Arabidopsis thaliana, Oryza sativa, Glycine max, and T. aestivum grouped them into eight well-defined classes. Furthermore, synteny analysis revealed 275 orthologous gene pairs in B. distachyon, Ae. tauschii, T. dicoccoides, O. sativa and A. thaliana. Ka/Ks values showed that most TaPERK genes, except TaPERK1, TaPERK2, TaPERK17, and TaPERK26, underwent strong purifying selection during evolutionary processes. Several cis-acting regulatory elements, essential for plant growth and development and the response to light, phytohormones, and diverse biotic and abiotic stresses, were predicted in the promoter regions of TaPERK genes. In addition, the expression profile of the TaPERK gene family revealed differential expression of TaPERK genes in various tissues and developmental stages. Furthermore, TaPERK gene expression was induced by various biotic and abiotic stresses. The RT-qPCR analysis also revealed similar results with slight variation. Therefore, this study's outcome provides valuable information for elucidating the precise functions of TaPERK in developmental processes and diverse stress conditions in wheat.

9.
Antioxidants (Basel) ; 10(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34943093

RESUMO

Tuberculosis (TB) is a recurrent and progressive disease, with high mortality rates worldwide. The drug-resistance phenomenon of Mycobacterium tuberculosis is a major obstruction of allelopathy treatment. An adverse side effect of allelopathic treatment is that it causes serious health complications. The search for suitable alternatives of conventional regimens is needed, i.e., by considering medicinal plant secondary metabolites to explore anti-TB drugs, targeting the action site of M. tuberculosis. Nowadays, plant-derived secondary metabolites are widely known for their beneficial uses, i.e., as antioxidants, antimicrobial agents, and in the treatment of a wide range of chronic human diseases (e.g., tuberculosis), and are known to "thwart" disease virulence. In this regard, in silico studies can reveal the inhibitory potential of plant-derived secondary metabolites against Mycobacterium at the very early stage of infection. Computational approaches based on different algorithms could play a significant role in screening plant metabolites against disease virulence of tuberculosis for drug designing.

10.
Antioxidants (Basel) ; 10(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34573103

RESUMO

In the current scenario of changing climatic conditions and the rising global population, there is an urgent need to explore novel, efficient, and economical natural products for the benefit of humankind. Biosurfactants are one of the latest explored microbial synthesized biomolecules that have been used in numerous fields, including agriculture, pharmaceuticals, cosmetics, food processing, and environment-cleaning industries, as a source of raw materials, for the lubrication, wetting, foaming, emulsions formulations, and as stabilizing dispersions. The amphiphilic nature of biosurfactants have shown to be a great advantage, distributing themselves into two immiscible surfaces by reducing the interfacial surface tension and increasing the solubility of hydrophobic compounds. Furthermore, their eco-friendly nature, low or even no toxic nature, durability at higher temperatures, and ability to withstand a wide range of pH fluctuations make microbial surfactants preferable compared to their chemical counterparts. Additionally, biosurfactants can obviate the oxidation flow by eliciting antioxidant properties, antimicrobial and anticancer activities, and drug delivery systems, further broadening their applicability in the food and pharmaceutical industries. Nowadays, biosurfactants have been broadly utilized to improve the soil quality by improving the concentration of trace elements and have either been mixed with pesticides or applied singly on the plant surfaces for plant disease management. In the present review, we summarize the latest research on microbial synthesized biosurfactant compounds, the limiting factors of biosurfactant production, their application in improving soil quality and plant disease management, and their use as antioxidant or antimicrobial compounds in the pharmaceutical industries.

11.
Int J Mol Sci ; 22(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34445448

RESUMO

Brassinosteroids (BRs) play crucial roles in various biological processes, including plant developmental processes and response to diverse biotic and abiotic stresses. However, no information is currently available about this gene family in wheat (Triticum aestivum L.). In the present investigation, we identified the BZR gene family in wheat to understand the evolution and their role in diverse developmental processes and under different stress conditions. In this study, we performed the genome-wide analysis of the BZR gene family in the bread wheat and identified 20 TaBZR genes through a homology search and further characterized them to understand their structure, function, and distribution across various tissues. Phylogenetic analyses lead to the classification of TaBZR genes into five different groups or subfamilies, providing evidence of evolutionary relationship with Arabidopsis thaliana, Zea mays, Glycine max, and Oryza sativa. A gene exon/intron structure analysis showed a distinct evolutionary path and predicted the possible gene duplication events. Further, the physical and biochemical properties, conserved motifs, chromosomal, subcellular localization, and cis-acting regulatory elements were also examined using various computational approaches. In addition, an analysis of public RNA-seq data also shows that TaBZR genes may be involved in diverse developmental processes and stress tolerance mechanisms. Moreover, qRT-PCR results also showed similar expression with slight variation. Collectively, these results suggest that TaBZR genes might play an important role in plant developmental processes and various stress conditions. Therefore, this work provides valuable information for further elucidate the precise role of BZR family members in wheat.


Assuntos
Brassinosteroides/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Estresse Fisiológico , Triticum/genética , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Genômica , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Glycine max/genética , Triazóis , Triticum/metabolismo , Triticum/fisiologia , Zea mays/genética
12.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299014

RESUMO

PIN-FORMED (PIN) genes play a crucial role in regulating polar auxin distribution in diverse developmental processes, including tropic responses, embryogenesis, tissue differentiation, and organogenesis. However, the role of PIN-mediated auxin transport in various plant species is poorly understood. Currently, no information is available about this gene family in wheat (Triticum aestivum L.). In the present investigation, we identified the PIN gene family in wheat to understand the evolution of PIN-mediated auxin transport and its role in various developmental processes and under different biotic and abiotic stress conditions. In this study, we performed genome-wide analysis of the PIN gene family in common wheat and identified 44 TaPIN genes through a homology search, further characterizing them to understand their structure, function, and distribution across various tissues. Phylogenetic analyses led to the classification of TaPIN genes into seven different groups, providing evidence of an evolutionary relationship with Arabidopsis thaliana and Oryza sativa. A gene exon/intron structure analysis showed a distinct evolutionary path and predicted the possible gene duplication events. Further, the physical and biochemical properties, conserved motifs, chromosomal, subcellular localization, transmembrane domains, and three-dimensional (3D) structure were also examined using various computational approaches. Cis-elements analysis of TaPIN genes showed that TaPIN promoters consist of phytohormone, plant growth and development, and stress-related cis-elements. In addition, expression profile analysis also revealed that the expression patterns of the TaPIN genes were different in different tissues and developmental stages. Several members of the TaPIN family were induced during biotic and abiotic stress. Moreover, the expression patterns of TaPIN genes were verified by qRT-PCR. The qRT-PCR results also show a similar expression with slight variation. Therefore, the outcome of this study provides basic genomic information on the expression of the TaPIN gene family and will pave the way for dissecting the precise role of TaPINs in plant developmental processes and different stress conditions.


Assuntos
Ácidos Indolacéticos/metabolismo , Família Multigênica/genética , Estresse Fisiológico/genética , Triticum/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Bases de Dados Genéticas , Evolução Molecular , Éxons , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Ontologia Genética , Genoma de Planta , Genômica , Íntrons , Proteínas de Membrana Transportadoras/genética , Oryza/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos , Mapas de Interação de Proteínas , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
13.
Plants (Basel) ; 10(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203729

RESUMO

Many pathogenic viral pandemics have caused threats to global health; the COVID-19 pandemic is the latest. Its transmission is growing exponentially all around the globe, putting constraints on the health system worldwide. A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causes this pandemic. Many candidate vaccines are available at this time for COVID-19, and there is a massive international race underway to procure as many vaccines as possible for each country. However, due to heavy global demand, there are strains in global vaccine production. The use of a plant biotechnology-based expression system for vaccine production also represents one part of this international effort, which is to develop plant-based heterologous expression systems, virus-like particles (VLPs)-vaccines, antiviral drugs, and a rapid supply of antigen-antibodies for detecting kits and plant origin bioactive compounds that boost the immunity and provide tolerance to fight against the virus infection. This review will look at the plant biotechnology platform that can provide the best fight against this global pandemic.

14.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673431

RESUMO

In this study, we have introduced newly synthesized substituted benzothiazole based berberine derivatives that have been analyzed for their in vitro and in silico biological properties. The activity towards various kinds of influenza virus strains by employing the cytopathic effect (CPE) and sulforhodamine B (SRB) assay. Several berberine-benzothiazole derivatives (BBDs), such as BBD1, BBD3, BBD4, BBD5, BBD7, and BBD11, demonstrated interesting anti-influenza virus activity on influenza A viruses (A/PR/8/34, A/Vic/3/75) and influenza B viral (B/Lee/40, and B/Maryland/1/59) strain, respectively. Furthermore, by testing neuraminidase activity (NA) with the neuraminidase assay kit, it was identified that BBD7 has potent neuraminidase activity. The molecular docking analysis further suggests that the BBD1-BBD14 compounds' antiviral activity may be because of interaction with residues of NA, and the same as in oseltamivir.


Assuntos
Benzotiazóis/farmacologia , Berberina/farmacologia , Simulação de Acoplamento Molecular , Neuraminidase/antagonistas & inibidores , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Benzotiazóis/uso terapêutico , Berberina/análogos & derivados , Berberina/uso terapêutico , Linhagem Celular , Efeito Citopatogênico Viral , Cães , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/enzimologia , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/enzimologia , Infecções por Orthomyxoviridae/enzimologia , Proteínas Virais/antagonistas & inibidores
15.
Plants (Basel) ; 10(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669519

RESUMO

Genetic diversity analysis and cultivar identification were performed using a core set of single nucleotide polymorphisms (SNPs) in cucumber (Cucumis sativus L.). For the genetic diversity study, 280 cucumber accessions collected from four continents (Asia, Europe, America, and Africa) by the National Agrobiodiversity Center of the Rural Development Administration in South Korea and 20 Korean commercial F1 hybrids were genotyped using 151 Fluidigm SNP assay sets. The heterozygosity of the SNP loci per accession ranged from 4.76 to 82.76%, with an average of 32.1%. Population genetics analysis was performed using population structure analysis and hierarchical clustering (HC), which indicated that these accessions were classified mainly into four subpopulations or clusters according to their geographical origins. The subpopulations for Asian and European accessions were clearly distinguished from each other (FST value = 0.47), while the subpopulations for Korean F1 hybrids and Asian accessions were closely related (FST = 0.34). The highest differentiation was observed between American and European accessions (FST = 0.41). Nei's genetic distance among the 280 accessions was 0.414 on average. In addition, 95 commercial F1 hybrids of three cultivar groups (Baekdadagi-, Gasi-, and Nakhap-types) were genotyped using 82 Fluidigm SNP assay sets for cultivar identification. These 82 SNPs differentiated all cultivars, except seven. The heterozygosity of the SNP loci per cultivar ranged from 12.20 to 69.14%, with an average of 34.2%. Principal component analysis and HC demonstrated that most cultivars were clustered based on their cultivar groups. The Baekdadagi- and Gasi-types were clearly distinguished, while the Nakhap-type was closely related to the Baekdadagi-type. Our results obtained using core Fluidigm SNP assay sets provide useful information for germplasm assessment and cultivar identification, which are essential for breeding and intellectual right protection in cucumber.

16.
Hortic Res ; 7: 121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821404

RESUMO

Three pumpkin species Cucurbita maxima, C. moschata, and C. pepo are commonly cultivated worldwide. To identify genome-wide SNPs in these cultivated pumpkin species, we collected 48 F1 cultivars consisting of 40 intraspecific hybrids (15 C. maxima, 18 C. moschata, and 7 C. pepo) and 8 interspecific hybrids (C. maxima x C. moschata). Genotyping by sequencing identified a total of 37,869 confident SNPs in this collection. These SNPs were filtered to generate a subset of 400 SNPs based on polymorphism and genome distribution. Of the 400 SNPs, 288 were used to genotype an additional 188 accessions (94 F1 cultivars, 50 breeding lines, and 44 landraces) with a SNP array-based platform. Reliable polymorphisms were observed in 224 SNPs (78.0%) and were used to assess genetic variations between and within the four predefined populations in 223 cultivated pumpkin accessions. Both principal component analysis and UPGMA clustering found four major clusters representing three pumpkin species and interspecific hybrids. This genetic differentiation was supported by pairwise Fst and Nei's genetic distance. The interspecific hybrids showed a higher level of genetic diversity relative to the other three populations. Of the 224 SNPs, five subsets of 192, 96, 48, 24, and 12 markers were evaluated for variety identification. The 192, 96, and 48 marker sets identified 204 (91.5%), 190 (85.2%), and 141 (63.2%) of the 223 accessions, respectively, while other subsets showed <25% of variety identification rates. These SNP markers provide a molecular tool with many applications for genetics and breeding in cultivated pumpkin.

17.
Plant Dis ; 103(1): 137-142, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30412456

RESUMO

Potato is an important source of food in South Korea, and viruses represent a significant threat to sustainable and profitable potato production. However, information about viruses affecting the potato crop in South Korea is limited. In 2017, potato plants of five cultivars exhibiting foliar mosaic, crinkling, and mottle were collected in two seed potato production areas, in Gangwon-do and Jeollabuk-do Provinces, and subjected to virus testing and characterization. Potato virus Y (PVY) was found associated with mosaic symptoms, and samples were characterized using reverse transcription polymerase chain reaction (RT-PCR) and whole genome sequencing. All analyzed PVY-positive samples were found to represent the same recombinant PVY strain: PVYNTN. Three PVY isolates were subjected to whole genome sequencing using overlapping RT-PCR fragments and Sanger methodology, and all three were confirmed to represent strain PVYNTNa after a recombination analysis of the complete genomes. In phylogenetic analysis, the three South Korean isolates were placed most closely to several PVYNTNa isolates reported from Japan and Vietnam, suggesting a common source of infection. This is the first report and complete molecular characterization of a PVYNTN strain present in the country, and because this strain induces tuber necrotic ringspot disease in susceptible cultivars of potato, appropriate management tools need to be implemented to mitigate potential tuber quality losses.


Assuntos
Potyvirus , Solanum tuberosum , Japão , Filogenia , Doenças das Plantas , República da Coreia , Vietnã
18.
Plant Cell Rep ; 34(10): 1681-3, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26252979

RESUMO

KEY MESSAGE: Even within closely related taxa, total length variation of PCR amplicons from chloroplast SSR must be confirmed by sequencing to avoid misinterpreting genetic relationships.


Assuntos
Cloroplastos/genética , DNA de Cloroplastos/genética , Marcadores Genéticos , Variação Genética/genética , Repetições de Microssatélites/genética
19.
Environ Sci Pollut Res Int ; 21(13): 8261-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24687782

RESUMO

Unexploded explosives that include royal demolition explosive (RDX) and trinitrotoluene (TNT) cause environmental concerns for surrounding ecosystems. Baccharis halimifolia is a plant species in the sunflower family that grows naturally near munitions sites on contaminated soils, indicating that it might have tolerance to explosives. B. halimifolia plants were grown on 100, 300, and 750 mg kg(-1) of soil amended with composition B (Comp B) explosive, a mixture of royal demolition explosive and trinitrotoluene. These concentrations are environmentally relevant to such munitions sites. The purpose of the experiment was to mimic contaminated sites to assess the plant's physiological response and uptake of explosives and to identify upregulated genes in response to explosives in order to better understand how this species copes with explosives. Stomatal conductance was not significantly reduced in any treatments. However, net photosynthesis, absorbed photons, and chlorophyll were significantly reduced in all treatments relative to the control plants. The dark-adapted parameter of photosynthesis was reduced only in the 750 mg kg(-1) Comp B treatment. Thus, we observed partial physiological tolerance to Comp B in B. halimifolia plants. We identified and cloned 11 B. halimifolia gene candidates that were orthologous to explosive-responsive genes previously identified in Arabidopsis and poplar. Nine of those genes showed more than 90% similarity to Conyza canadensis (horseweed), which is the closest relative with significant available genomics resources. The expression patterns of these genes were studied using quantitative real-time PCR. Three genes were transcriptionally upregulated in Comp B treatments, and the Cytb6f gene was found to be highly active in all the tested concentrations of Comp B. These three newly identified candidate genes of this explosives-tolerant plant species can be potentially exploited for uses in phytoremediation by overexpressing these genes in transgenic plants and, similarly, by using promoters or variants of promoters from these genes fused to reporter genes in transgenic plants for making phytosensors to report the localized presence of explosives in contaminated soils.


Assuntos
Baccharis/efeitos dos fármacos , Monitoramento Ambiental/métodos , Substâncias Explosivas/toxicidade , Poluentes do Solo/análise , Triazinas/toxicidade , Arabidopsis/genética , Baccharis/genética , Baccharis/metabolismo , Biodegradação Ambiental , Clorofila/análise , Ecossistema , Poluição Ambiental/análise , Substâncias Explosivas/metabolismo , Expressão Gênica/efeitos dos fármacos , Plantas/metabolismo , Solo , Triazinas/metabolismo , Trinitrotolueno
20.
BMC Genomics ; 12: 386, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21806822

RESUMO

BACKGROUND: The Apiaceae family includes several vegetable and spice crop species among which carrot is the most economically important member, with ~21 million tons produced yearly worldwide. Despite its importance, molecular resources in this species are relatively underdeveloped. The availability of informative, polymorphic, and robust PCR-based markers, such as microsatellites (or SSRs), will facilitate genetics and breeding of carrot and other Apiaceae, including integration of linkage maps, tagging of phenotypic traits and assisting positional gene cloning. Thus, with the purpose of isolating carrot microsatellites, two different strategies were used; a hybridization-based library enrichment for SSRs, and bioinformatic mining of SSRs in BAC-end sequence and EST sequence databases. This work reports on the development of 300 carrot SSR markers and their characterization at various levels. RESULTS: Evaluation of microsatellites isolated from both DNA sources in subsets of 7 carrot F2 mapping populations revealed that SSRs from the hybridization-based method were longer, had more repeat units and were more polymorphic than SSRs isolated by sequence search. Overall, 196 SSRs (65.1%) were polymorphic in at least one mapping population, and the percentage of polymophic SSRs across F2 populations ranged from 17.8 to 24.7. Polymorphic markers in one family were evaluated in the entire F2, allowing the genetic mapping of 55 SSRs (38 codominant) onto the carrot reference map. The SSR loci were distributed throughout all 9 carrot linkage groups (LGs), with 2 to 9 SSRs/LG. In addition, SSR evaluations in carrot-related taxa indicated that a significant fraction of the carrot SSRs transfer successfully across Apiaceae, with heterologous amplification success rate decreasing with the target-species evolutionary distance from carrot. SSR diversity evaluated in a collection of 65 D. carota accessions revealed a high level of polymorphism for these selected loci, with an average of 19 alleles/locus and 0.84 expected heterozygosity. CONCLUSIONS: The addition of 55 SSRs to the carrot map, together with marker characterizations in six other mapping populations, will facilitate future comparative mapping studies and integration of carrot maps. The markers developed herein will be a valuable resource for assisting breeding, genetic, diversity, and genomic studies of carrot and other Apiaceae.


Assuntos
Mapeamento Cromossômico , Daucus carota/genética , Genômica , Repetições de Microssatélites/genética , Polimorfismo Genético/genética , Etiquetas de Sequências Expressas/metabolismo , Marcadores Genéticos/genética , Genoma de Planta/genética , Hibridização Genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...