Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMB Rep ; 56(2): 178-183, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36593104

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder, of which pathogenesis is caused by a polyglutamine expansion in the amino-terminus of huntingtin gene that resulted in the aggregation of mutant HTT proteins. HD is characterized by progressive motor dysfunction, cognitive impairment and neuropsychiatric disturbances. Histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase, has been shown to induce transport- and release-defect phenotypes in HD models, whilst treatment with HDAC6 inhibitors ameliorates the phenotypic effects of HD by increasing the levels of α-tubulin acetylation, as well as decreasing the accumulation of mutant huntingtin (mHTT) aggregates, suggesting HDAC6 inhibitor as a HD therapeutics. In this study, we employed in vitro neural stem cell (NSC) model and in vivo YAC128 transgenic (TG) mouse model of HD to test the effect of a novel HDAC6 selective inhibitor, CKD-504, developed by Chong Kun Dang (CKD Pharmaceutical Corp., Korea). We found that treatment of CKD-504 increased tubulin acetylation, microtubule stabilization, axonal transport, and the decrease of mutant huntingtin protein in vitro. From in vivo study, we observed CKD-504 improved the pathology of Huntington's disease: alleviated behavioral deficits, increased axonal transport and number of neurons, restored synaptic function in corticostriatal (CS) circuit, reduced mHTT accumulation, inflammation and tau hyperphosphorylation in YAC128 TG mouse model. These novel results highlight CKD-504 as a potential therapeutic strategy in HD. [BMB Reports 2023; 56(3): 178-183].


Assuntos
Doença de Huntington , Camundongos , Animais , Desacetilase 6 de Histona/metabolismo , Doença de Huntington/tratamento farmacológico , Camundongos Transgênicos , Neurônios/metabolismo , Modelos Animais de Doenças
2.
Mol Neurodegener ; 16(1): 23, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849621

RESUMO

BACKGROUND: Recently, we and other researchers reported that brain metabolic disorders are implicated in Alzheimer's disease (AD), a progressive, devastating and incurable neurodegenerative disease. Hence, novel therapeutic approaches are urgently needed to explore potential and novel therapeutic targets/agents for the treatment of AD. The neuronal adiponectin receptor 1 (AdipoR1) is an emerging potential target for intervention in metabolic-associated AD. We aimed to validate this hypothesis and explore in-depth the therapeutic effects of an osmotin-derived adiponectin-mimetic novel nonapeptide (Os-pep) on metabolic-associated AD. METHODS: We used an Os-pep dosage regimen (5 µg/g, i.p., on alternating days for 45 days) for APP/PS1 in amyloid ß oligomer-injected, transgenic adiponectin knockout (Adipo-/-) and AdipoR1 knockdown mice. After behavioral studies, brain tissues were subjected to biochemical and immunohistochemical analyses. In separate cohorts of mice, electrophysiolocal and Golgi staining experiments were performed. To validate the in vivo studies, we used human APP Swedish (swe)/Indiana (ind)-overexpressing neuroblastoma SH-SY5Y cells, which were subjected to knockdown of AdipoR1 and APMK with siRNAs, treated with Os-pep and other conditions as per the mechanistic approach, and we proceeded to perform further biochemical analyses. RESULTS: Our in vitro and in vivo results show that Os-pep has good safety and neuroprotection profiles and crosses the blood-brain barrier. We found reduced levels of neuronal AdipoR1 in human AD brain tissue. Os-pep stimulates AdipoR1 and its downstream target, AMP-activated protein kinase (AMPK) signaling, in AD and Adipo-/- mice. Mechanistically, in all of the in vivo and in vitro studies, Os-pep rescued aberrant neuronal metabolism by reducing neuronal insulin resistance and activated downstream insulin signaling through regulation of AdipoR1/AMPK signaling to consequently improve the memory functions of the AD and Adipo-/- mice, which was associated with improved synaptic function and long-term potentiation via an AdipoR1-dependent mechanism. CONCLUSION: Our findings show that Os-pep activates AdipoR1/AMPK signaling and regulates neuronal insulin resistance and insulin signaling, which subsequently rescues memory deficits in AD and adiponectin-deficient models. Taken together, the results indicate that Os-pep, as an adiponectin-mimetic novel nonapeptide, is a valuable and promising potential therapeutic candidate to treat aberrant brain metabolism associated with AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Receptores de Adiponectina/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/deficiência , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/genética , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Resistência à Insulina , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Presenilina-1/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Adiponectina/genética , Transdução de Sinais
3.
Exp Physiol ; 90(4): 577-86, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15833757

RESUMO

The effect of sodium nitroprusside (SNP) on carbachol (CCh)-evoked inward cationic current (Icat) oscillations in guinea-pig ileal longitudinal myocytes was investigated using the whole-cell patch-clamp technique and permeabilized longitudinal muscle strips. SNP (10 microm) completely inhibited I(cat) oscillations evoked by 1 microm CCh. 1H-(1,2,4) Oxadiazole [4,3-a] quinoxaline-1-one (ODQ; 1 microm) almost completely prevented the inhibitory effect of SNP on Icat oscillations. 8-Bromo-guanosine 3',5'-cyclic monophosphate (8-Br-cGMP; 30 microm) in the pipette solution completely abolished Icat oscillations. However, a pipette solution containing Rp-8-Br-cGMP (30 microm) almost completely abolished the inhibitory effect of SNP on Icat oscillations. When the intracellular calcium concentration ([Ca2+]i) was held at a resting level using BAPTA (10 mm) and Ca2+ (4.6 microm) in the pipette solution, CCh (1 microm) evoked only the sustained component of Icat without any oscillations and SNP did not affect the current. A high concentration of inositol 1,4,5-trisphosphate (IP3; 30 microm) in the patch pipette solutions significantly reduced the inhibitory effect of SNP (10 microm) on Icat oscillations. SNP significantly inhibited the Ca2+ release evoked by either CCh or IP3 but not by caffeine in permeabilized preparations of longitudinal muscle strips. These results suggest that the inhibitory effects of SNP on Icat oscillations are mediated, in part, by functional modulation of the IP3 receptor, and not by the inhibition of cationic channels themselves or by muscarinic receptors in the plasma membrane. This inhibition seems to be mediated by an increased cGMP concentration in a protein kinase G-dependent manner.


Assuntos
Carbacol/antagonistas & inibidores , Agonistas Muscarínicos/farmacologia , Miócitos de Músculo Liso/fisiologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Animais , Cafeína/farmacologia , Carbacol/farmacologia , Quelantes/farmacologia , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Cobaias , Íleo/efeitos dos fármacos , Íleo/fisiologia , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Oxidiazóis/farmacologia , Técnicas de Patch-Clamp , Fosfatidilinositol 3-Quinases/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Quinoxalinas/farmacologia , Fosfolipases Tipo C/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...